Documentation

Mathlib.RingTheory.PolynomialLaw.Basic

Polynomial laws on modules #

Let M and N be a modules over a commutative ring R. A polynomial law f : PolynomialLaw R M N, with notation f : M →ₚₗₗ[R] N, is a “law” that assigns a natural map PolynomialLaw.toFun' f S : S ⊗[R] M → S ⊗[R] N for every R-algebra S.

For type theoretic reasons, if R : Type u, then the definition of the polynomial map f is restricted to R-algebras S such that S : Type u. Using the fact that a module is the direct limit of its finitely generated submodules, that a finitely generated subalgebra is a quotient of a polynomial ring in the universe u, plus the commutation of tensor products with direct limits, we will extend the functor to all R-algebras (TODO).

Main definitions/lemmas #

In further works, we construct the coefficients of a polynomial law and show the relation with polynomials (when the module M is free and finite).

Implementation notes #

In the literature, the theory is writen for commutative rings, but this implementation only assume R is a commutative semiring.

References #

structure PolynomialLaw (R : Type u) [CommSemiring R] (M : Type u_1) [AddCommMonoid M] [Module R M] (N : Type u_2) [AddCommMonoid N] [Module R N] :
Type (max (max (u + 1) u_1) u_2)

A polynomial map M →ₚₗ[R] N between R-modules is a functorial family of maps S ⊗[R] M → S ⊗[R] N, for all R-algebras S.

For universe reasons, S has to be restricted to the same universe as R.

Instances For
    theorem PolynomialLaw.ext {R : Type u} {inst✝ : CommSemiring R} {M : Type u_1} {inst✝¹ : AddCommMonoid M} {inst✝² : Module R M} {N : Type u_2} {inst✝³ : AddCommMonoid N} {inst✝⁴ : Module R N} {x y : M →ₚₗ[R] N} (toFun' : x.toFun' = y.toFun') :
    x = y

    M →ₚₗ[R] N is the type of R-polynomial laws from M to N.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem PolynomialLaw.isCompat_apply' {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] {f : M →ₚₗ[R] N} {S : Type u} [CommSemiring S] [Algebra R S] {S' : Type u} [CommSemiring S'] [Algebra R S'] (φ : S →ₐ[R] S') (x : TensorProduct R S M) :
      instance PolynomialLaw.instZero {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] :
      Equations
      @[simp]
      theorem PolynomialLaw.zero_def {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] (S : Type u) [CommSemiring S] [Algebra R S] :
      toFun' 0 S = 0
      instance PolynomialLaw.instInhabited {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] :
      Equations
      def PolynomialLaw.id {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] :

      The identity as a polynomial law

      Equations
      Instances For
        theorem PolynomialLaw.id_apply' {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {S : Type u} [CommSemiring S] [Algebra R S] :
        noncomputable def PolynomialLaw.add {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] (f g : M →ₚₗ[R] N) :

        The sum of two polynomial laws

        Equations
        Instances For
          instance PolynomialLaw.instAdd {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] :
          Equations
          @[simp]
          theorem PolynomialLaw.add_def {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] (f g : M →ₚₗ[R] N) (S : Type u) [CommSemiring S] [Algebra R S] :
          (f + g).toFun' S = f.toFun' S + g.toFun' S
          theorem PolynomialLaw.add_def_apply {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] (f g : M →ₚₗ[R] N) (S : Type u) [CommSemiring S] [Algebra R S] (m : TensorProduct R S M) :
          (f + g).toFun' S m = f.toFun' S m + g.toFun' S m
          def PolynomialLaw.smul {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] (r : R) (f : M →ₚₗ[R] N) :

          External multiplication of a f : M →ₚₗ[R] N by r : R

          Equations
          Instances For
            instance PolynomialLaw.instSMul {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] :
            SMul R (M →ₚₗ[R] N)
            Equations
            @[simp]
            theorem PolynomialLaw.smul_def {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] (r : R) (f : M →ₚₗ[R] N) (S : Type u) [CommSemiring S] [Algebra R S] :
            (r f).toFun' S = r f.toFun' S
            theorem PolynomialLaw.smul_def_apply {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] (r : R) (f : M →ₚₗ[R] N) (S : Type u) [CommSemiring S] [Algebra R S] (m : TensorProduct R S M) :
            (r f).toFun' S m = r f.toFun' S m
            theorem PolynomialLaw.add_smul {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] (a b : R) (f : M →ₚₗ[R] N) :
            (a + b) f = a f + b f
            theorem PolynomialLaw.zero_smul {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] (f : M →ₚₗ[R] N) :
            0 f = 0
            theorem PolynomialLaw.one_smul {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] (f : M →ₚₗ[R] N) :
            1 f = f
            instance PolynomialLaw.instModule {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] :
            Equations
            noncomputable def PolynomialLaw.neg {R : Type u} [CommRing R] {M : Type u_1} [AddCommGroup M] [Module R M] {N : Type u_2} [AddCommGroup N] [Module R N] (f : M →ₚₗ[R] N) :

            The opposite of a polynomial law

            Equations
            Instances For
              instance PolynomialLaw.instNeg {R : Type u} [CommRing R] {M : Type u_1} [AddCommGroup M] [Module R M] {N : Type u_2} [AddCommGroup N] [Module R N] :
              Equations
              @[simp]
              theorem PolynomialLaw.neg_def {R : Type u} [CommRing R] {M : Type u_1} [AddCommGroup M] [Module R M] {N : Type u_2} [AddCommGroup N] [Module R N] (f : M →ₚₗ[R] N) (S : Type u) [CommSemiring S] [Algebra R S] :
              (-f).toFun' S = -1 f.toFun' S
              def PolynomialLaw.ground {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] (f : M →ₚₗ[R] N) :
              MN

              The map M → N associated with a f : M →ₚₗ[R] N (essentially, f.toFun' R)

              Equations
              Instances For
                theorem PolynomialLaw.ground_apply {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] (f : M →ₚₗ[R] N) (m : M) :
                f.ground m = (TensorProduct.lid R N) (f.toFun' R (1 ⊗ₜ[R] m))
                instance PolynomialLaw.instCoeFunForall {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] :
                CoeFun (M →ₚₗ[R] N) fun (x : M →ₚₗ[R] N) => MN
                Equations
                theorem PolynomialLaw.one_tmul_ground_apply' {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] (f : M →ₚₗ[R] N) {S : Type u} [CommSemiring S] [Algebra R S] (x : M) :
                1 ⊗ₜ[R] f.ground x = f.toFun' S (1 ⊗ₜ[R] x)
                def PolynomialLaw.lground {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] :
                (M →ₚₗ[R] N) →ₗ[R] MN

                The map ground assigning a function M → N to a polynomial map f : M →ₚₗ[R] N as a linear map.

                Equations
                Instances For
                  theorem PolynomialLaw.ground_id_apply {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] (m : M) :
                  id.ground m = m
                  def PolynomialLaw.comp {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] {P : Type u_3} [AddCommMonoid P] [Module R P] (g : N →ₚₗ[R] P) (f : M →ₚₗ[R] N) :

                  Composition of polynomial maps.

                  Equations
                  Instances For
                    theorem PolynomialLaw.comp_toFun' {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] {P : Type u_3} [AddCommMonoid P] [Module R P] (f : M →ₚₗ[R] N) (g : N →ₚₗ[R] P) (S : Type u) [CommSemiring S] [Algebra R S] :
                    (g.comp f).toFun' S = g.toFun' S f.toFun' S
                    theorem PolynomialLaw.comp_assoc {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] {P : Type u_3} [AddCommMonoid P] [Module R P] {Q : Type u_4} [AddCommMonoid Q] [Module R Q] (f : M →ₚₗ[R] N) (g : N →ₚₗ[R] P) (h : P →ₚₗ[R] Q) :
                    h.comp (g.comp f) = (h.comp g).comp f
                    theorem PolynomialLaw.comp_id {R : Type u} [CommSemiring R] {N : Type u_2} [AddCommMonoid N] [Module R N] {P : Type u_3} [AddCommMonoid P] [Module R P] (g : N →ₚₗ[R] P) :
                    g.comp id = g
                    theorem PolynomialLaw.id_comp {R : Type u} [CommSemiring R] {M : Type u_1} [AddCommMonoid M] [Module R M] {N : Type u_2} [AddCommMonoid N] [Module R N] (f : M →ₚₗ[R] N) :
                    id.comp f = f