Tensor product of R
-algebras and rings #
If (Aᵢ)
is a family of R
-algebras then the R
-tensor product ⨂ᵢ Aᵢ
is an R
-algebra as well
with structure map defined by r ↦ r • 1
.
In particular if we take R
to be ℤ
, then this collapses into the tensor product of rings.
instance
PiTensorProduct.instOne
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → AddCommMonoidWithOne (A i)]
[(i : ι) → Module R (A i)]
:
One (PiTensorProduct R fun (i : ι) => A i)
Equations
- PiTensorProduct.instOne = { one := (PiTensorProduct.tprod R) 1 }
theorem
PiTensorProduct.one_def
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → AddCommMonoidWithOne (A i)]
[(i : ι) → Module R (A i)]
:
1 = (PiTensorProduct.tprod R) 1
instance
PiTensorProduct.instAddCommMonoidWithOne
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → AddCommMonoidWithOne (A i)]
[(i : ι) → Module R (A i)]
:
AddCommMonoidWithOne (PiTensorProduct R fun (i : ι) => A i)
Equations
- PiTensorProduct.instAddCommMonoidWithOne = AddCommMonoidWithOne.mk ⋯
def
PiTensorProduct.mul
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → NonUnitalNonAssocSemiring (A i)]
[(i : ι) → Module R (A i)]
[∀ (i : ι), SMulCommClass R (A i) (A i)]
[∀ (i : ι), IsScalarTower R (A i) (A i)]
:
(PiTensorProduct R fun (i : ι) => A i) →ₗ[R] (PiTensorProduct R fun (i : ι) => A i) →ₗ[R] PiTensorProduct R fun (i : ι) => A i
The multiplication in tensor product of rings is induced by (xᵢ) * (yᵢ) = (xᵢ * yᵢ)
Equations
- PiTensorProduct.mul = PiTensorProduct.piTensorHomMap₂ ((PiTensorProduct.tprod R) fun (x : ι) => LinearMap.mul R (A x))
Instances For
@[simp]
theorem
PiTensorProduct.mul_tprod_tprod
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → NonUnitalNonAssocSemiring (A i)]
[(i : ι) → Module R (A i)]
[∀ (i : ι), SMulCommClass R (A i) (A i)]
[∀ (i : ι), IsScalarTower R (A i) (A i)]
(x : (i : ι) → A i)
(y : (i : ι) → A i)
:
(PiTensorProduct.mul ((PiTensorProduct.tprod R) x)) ((PiTensorProduct.tprod R) y) = (PiTensorProduct.tprod R) (x * y)
instance
PiTensorProduct.instMul
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → NonUnitalNonAssocSemiring (A i)]
[(i : ι) → Module R (A i)]
[∀ (i : ι), SMulCommClass R (A i) (A i)]
[∀ (i : ι), IsScalarTower R (A i) (A i)]
:
Mul (PiTensorProduct R fun (i : ι) => A i)
Equations
- PiTensorProduct.instMul = { mul := fun (x y : PiTensorProduct R fun (i : ι) => A i) => (PiTensorProduct.mul x) y }
theorem
PiTensorProduct.mul_def
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → NonUnitalNonAssocSemiring (A i)]
[(i : ι) → Module R (A i)]
[∀ (i : ι), SMulCommClass R (A i) (A i)]
[∀ (i : ι), IsScalarTower R (A i) (A i)]
(x : PiTensorProduct R fun (i : ι) => A i)
(y : PiTensorProduct R fun (i : ι) => A i)
:
@[simp]
theorem
PiTensorProduct.tprod_mul_tprod
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → NonUnitalNonAssocSemiring (A i)]
[(i : ι) → Module R (A i)]
[∀ (i : ι), SMulCommClass R (A i) (A i)]
[∀ (i : ι), IsScalarTower R (A i) (A i)]
(x : (i : ι) → A i)
(y : (i : ι) → A i)
:
(PiTensorProduct.tprod R) x * (PiTensorProduct.tprod R) y = (PiTensorProduct.tprod R) (x * y)
theorem
SemiconjBy.tprod
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → NonUnitalNonAssocSemiring (A i)]
[(i : ι) → Module R (A i)]
[∀ (i : ι), SMulCommClass R (A i) (A i)]
[∀ (i : ι), IsScalarTower R (A i) (A i)]
{a₁ : (i : ι) → A i}
{a₂ : (i : ι) → A i}
{a₃ : (i : ι) → A i}
(ha : SemiconjBy a₁ a₂ a₃)
:
SemiconjBy ((PiTensorProduct.tprod R) a₁) ((PiTensorProduct.tprod R) a₂) ((PiTensorProduct.tprod R) a₃)
theorem
Commute.tprod
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → NonUnitalNonAssocSemiring (A i)]
[(i : ι) → Module R (A i)]
[∀ (i : ι), SMulCommClass R (A i) (A i)]
[∀ (i : ι), IsScalarTower R (A i) (A i)]
{a₁ : (i : ι) → A i}
{a₂ : (i : ι) → A i}
(ha : Commute a₁ a₂)
:
Commute ((PiTensorProduct.tprod R) a₁) ((PiTensorProduct.tprod R) a₂)
theorem
PiTensorProduct.smul_tprod_mul_smul_tprod
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → NonUnitalNonAssocSemiring (A i)]
[(i : ι) → Module R (A i)]
[∀ (i : ι), SMulCommClass R (A i) (A i)]
[∀ (i : ι), IsScalarTower R (A i) (A i)]
(r : R)
(s : R)
(x : (i : ι) → A i)
(y : (i : ι) → A i)
:
r • (PiTensorProduct.tprod R) x * s • (PiTensorProduct.tprod R) y = (r * s) • (PiTensorProduct.tprod R) (x * y)
instance
PiTensorProduct.instNonUnitalNonAssocSemiring
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → NonUnitalNonAssocSemiring (A i)]
[(i : ι) → Module R (A i)]
[∀ (i : ι), SMulCommClass R (A i) (A i)]
[∀ (i : ι), IsScalarTower R (A i) (A i)]
:
NonUnitalNonAssocSemiring (PiTensorProduct R fun (i : ι) => A i)
Equations
- PiTensorProduct.instNonUnitalNonAssocSemiring = NonUnitalNonAssocSemiring.mk ⋯ ⋯ ⋯ ⋯
theorem
PiTensorProduct.one_mul
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → NonAssocSemiring (A i)]
[(i : ι) → Module R (A i)]
[∀ (i : ι), SMulCommClass R (A i) (A i)]
[∀ (i : ι), IsScalarTower R (A i) (A i)]
(x : PiTensorProduct R fun (i : ι) => A i)
:
(PiTensorProduct.mul ((PiTensorProduct.tprod R) 1)) x = x
theorem
PiTensorProduct.mul_one
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → NonAssocSemiring (A i)]
[(i : ι) → Module R (A i)]
[∀ (i : ι), SMulCommClass R (A i) (A i)]
[∀ (i : ι), IsScalarTower R (A i) (A i)]
(x : PiTensorProduct R fun (i : ι) => A i)
:
(PiTensorProduct.mul x) ((PiTensorProduct.tprod R) 1) = x
instance
PiTensorProduct.instNonAssocSemiring
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → NonAssocSemiring (A i)]
[(i : ι) → Module R (A i)]
[∀ (i : ι), SMulCommClass R (A i) (A i)]
[∀ (i : ι), IsScalarTower R (A i) (A i)]
:
NonAssocSemiring (PiTensorProduct R fun (i : ι) => A i)
Equations
- PiTensorProduct.instNonAssocSemiring = NonAssocSemiring.mk ⋯ ⋯ ⋯ ⋯
def
PiTensorProduct.tprodMonoidHom
{ι : Type u_1}
(R : Type u_3)
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → NonAssocSemiring (A i)]
[(i : ι) → Module R (A i)]
[∀ (i : ι), SMulCommClass R (A i) (A i)]
[∀ (i : ι), IsScalarTower R (A i) (A i)]
:
((i : ι) → A i) →* PiTensorProduct R fun (i : ι) => A i
PiTensorProduct.tprod
as a MonoidHom
.
Equations
- PiTensorProduct.tprodMonoidHom R = { toFun := ⇑(PiTensorProduct.tprod R), map_one' := ⋯, map_mul' := ⋯ }
Instances For
@[simp]
theorem
PiTensorProduct.tprodMonoidHom_apply
{ι : Type u_1}
(R : Type u_3)
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → NonAssocSemiring (A i)]
[(i : ι) → Module R (A i)]
[∀ (i : ι), SMulCommClass R (A i) (A i)]
[∀ (i : ι), IsScalarTower R (A i) (A i)]
(a : (i : ι) → A i)
:
(PiTensorProduct.tprodMonoidHom R) a = (PiTensorProduct.tprod R) a
theorem
PiTensorProduct.mul_assoc
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → NonUnitalSemiring (A i)]
[(i : ι) → Module R (A i)]
[∀ (i : ι), SMulCommClass R (A i) (A i)]
[∀ (i : ι), IsScalarTower R (A i) (A i)]
(x : PiTensorProduct R fun (i : ι) => A i)
(y : PiTensorProduct R fun (i : ι) => A i)
(z : PiTensorProduct R fun (i : ι) => A i)
:
(PiTensorProduct.mul ((PiTensorProduct.mul x) y)) z = (PiTensorProduct.mul x) ((PiTensorProduct.mul y) z)
instance
PiTensorProduct.instNonUnitalSemiring
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → NonUnitalSemiring (A i)]
[(i : ι) → Module R (A i)]
[∀ (i : ι), SMulCommClass R (A i) (A i)]
[∀ (i : ι), IsScalarTower R (A i) (A i)]
:
NonUnitalSemiring (PiTensorProduct R fun (i : ι) => A i)
Equations
- PiTensorProduct.instNonUnitalSemiring = NonUnitalSemiring.mk ⋯
instance
PiTensorProduct.instSemiring
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → Semiring (A i)]
[(i : ι) → Algebra R (A i)]
:
Semiring (PiTensorProduct R fun (i : ι) => A i)
Equations
- PiTensorProduct.instSemiring = Semiring.mk ⋯ ⋯ ⋯ ⋯ npowRecAuto ⋯ ⋯
instance
PiTensorProduct.instAlgebra
{ι : Type u_1}
{R' : Type u_2}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R']
[CommSemiring R]
[(i : ι) → Semiring (A i)]
[Algebra R' R]
[(i : ι) → Algebra R (A i)]
:
Algebra R' (PiTensorProduct R fun (i : ι) => A i)
Equations
- PiTensorProduct.instAlgebra = Algebra.mk { toFun := fun (x : R') => x • 1, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ } ⋯ ⋯
theorem
PiTensorProduct.algebraMap_apply
{ι : Type u_1}
{R' : Type u_2}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R']
[CommSemiring R]
[(i : ι) → Semiring (A i)]
[Algebra R' R]
[(i : ι) → Algebra R (A i)]
[(i : ι) → Algebra R' (A i)]
[∀ (i : ι), IsScalarTower R' R (A i)]
(r : R')
(i : ι)
[DecidableEq ι]
:
(algebraMap R' (PiTensorProduct R fun (i : ι) => A i)) r = (PiTensorProduct.tprod R) (Pi.mulSingle i ((algebraMap R' (A i)) r))
def
PiTensorProduct.singleAlgHom
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → Semiring (A i)]
[(i : ι) → Algebra R (A i)]
[DecidableEq ι]
(i : ι)
:
A i →ₐ[R] PiTensorProduct R fun (i : ι) => A i
The map Aᵢ ⟶ ⨂ᵢ Aᵢ
given by a ↦ 1 ⊗ ... ⊗ a ⊗ 1 ⊗ ...
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
PiTensorProduct.singleAlgHom_apply
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → Semiring (A i)]
[(i : ι) → Algebra R (A i)]
[DecidableEq ι]
(i : ι)
(a : A i)
:
(PiTensorProduct.singleAlgHom i) a = (PiTensorProduct.tprod R) ((MonoidHom.mulSingle A i) a)
def
PiTensorProduct.liftAlgHom
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → Semiring (A i)]
[(i : ι) → Algebra R (A i)]
{S : Type u_5}
[Semiring S]
[Algebra R S]
(f : MultilinearMap R A S)
(one : f 1 = 1)
(mul : ∀ (x y : (i : ι) → A i), f (x * y) = f x * f y)
:
(PiTensorProduct R fun (i : ι) => A i) →ₐ[R] S
Lifting a multilinear map to an algebra homomorphism from tensor product
Equations
- PiTensorProduct.liftAlgHom f one mul = AlgHom.ofLinearMap (PiTensorProduct.lift f) ⋯ ⋯
Instances For
@[simp]
theorem
PiTensorProduct.liftAlgHom_apply
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → Semiring (A i)]
[(i : ι) → Algebra R (A i)]
{S : Type u_5}
[Semiring S]
[Algebra R S]
(f : MultilinearMap R A S)
(one : f 1 = 1)
(mul : ∀ (x y : (i : ι) → A i), f (x * y) = f x * f y)
(a : PiTensorProduct R fun (i : ι) => A i)
:
(PiTensorProduct.liftAlgHom f one mul) a = (PiTensorProduct.lift f) a
@[simp]
theorem
PiTensorProduct.tprod_noncommProd
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → Semiring (A i)]
[(i : ι) → Algebra R (A i)]
{κ : Type u_5}
(s : Finset κ)
(x : κ → (i : ι) → A i)
(hx : (↑s).Pairwise fun (a b : κ) => Commute (x a) (x b))
:
(PiTensorProduct.tprod R) (s.noncommProd x hx) = s.noncommProd (fun (k : κ) => (PiTensorProduct.tprod R) (x k)) ⋯
theorem
PiTensorProduct.algHom_ext
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → Semiring (A i)]
[(i : ι) → Algebra R (A i)]
{S : Type u_5}
[Finite ι]
[DecidableEq ι]
[Semiring S]
[Algebra R S]
⦃f : (PiTensorProduct R fun (i : ι) => A i) →ₐ[R] S⦄
⦃g : (PiTensorProduct R fun (i : ι) => A i) →ₐ[R] S⦄
(h : ∀ (i : ι), f.comp (PiTensorProduct.singleAlgHom i) = g.comp (PiTensorProduct.singleAlgHom i))
:
f = g
To show two algebra morphisms from finite tensor products are equal, it suffices to show that they agree on elements of the form $1 ⊗ ⋯ ⊗ a ⊗ 1 ⊗ ⋯$.
theorem
PiTensorProduct.mul_comm
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → CommSemiring (A i)]
[(i : ι) → Algebra R (A i)]
(x : PiTensorProduct R fun (i : ι) => A i)
(y : PiTensorProduct R fun (i : ι) => A i)
:
(PiTensorProduct.mul x) y = (PiTensorProduct.mul y) x
instance
PiTensorProduct.instCommSemiring
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → CommSemiring (A i)]
[(i : ι) → Algebra R (A i)]
:
CommSemiring (PiTensorProduct R fun (i : ι) => A i)
Equations
- PiTensorProduct.instCommSemiring = CommSemiring.mk ⋯
@[simp]
theorem
PiTensorProduct.tprod_prod
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommSemiring R]
[(i : ι) → CommSemiring (A i)]
[(i : ι) → Algebra R (A i)]
{κ : Type u_5}
(s : Finset κ)
(x : κ → (i : ι) → A i)
:
(PiTensorProduct.tprod R) (∏ k ∈ s, x k) = ∏ k ∈ s, (PiTensorProduct.tprod R) (x k)
noncomputable def
PiTensorProduct.constantBaseRingEquiv
(ι : Type u_1)
(R : Type u_3)
[CommSemiring R]
[Fintype ι]
:
(PiTensorProduct R fun (x : ι) => R) ≃ₐ[R] R
The algebra equivalence from the tensor product of the constant family with
value R
to R
, given by multiplication of the entries.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
PiTensorProduct.constantBaseRingEquiv_tprod
{ι : Type u_1}
{R : Type u_3}
[CommSemiring R]
[Fintype ι]
(x : ι → R)
:
(PiTensorProduct.constantBaseRingEquiv ι R) ((PiTensorProduct.tprod R) x) = ∏ i : ι, x i
@[simp]
theorem
PiTensorProduct.constantBaseRingEquiv_symm
{ι : Type u_1}
{R : Type u_3}
[CommSemiring R]
[Fintype ι]
(r : R)
:
(PiTensorProduct.constantBaseRingEquiv ι R).symm r = (algebraMap R (PiTensorProduct R fun (x : ι) => R)) r
instance
PiTensorProduct.instCommRing
{ι : Type u_1}
{R : Type u_3}
{A : ι → Type u_4}
[CommRing R]
[(i : ι) → CommRing (A i)]
[(i : ι) → Algebra R (A i)]
:
CommRing (PiTensorProduct R fun (i : ι) => A i)
Equations
- PiTensorProduct.instCommRing = CommRing.mk ⋯