LexOrder of multivariate power series
Given an ordering of σ
such that WellOrderGT σ
,
the lexicographic order on σ →₀ ℕ
is a well ordering,
which can be used to define a natural valuation lexOrder
on the ring MvPowerSeries σ R
:
the smallest exponent in the support.
noncomputable def
MvPowerSeries.lexOrder
{σ : Type u_1}
{R : Type u_2}
[Semiring R]
[LinearOrder σ]
[WellFoundedGT σ]
(φ : MvPowerSeries σ R)
:
The lex order on multivariate power series.
Equations
Instances For
theorem
MvPowerSeries.lexOrder_def_of_ne_zero
{σ : Type u_1}
{R : Type u_2}
[Semiring R]
[LinearOrder σ]
[WellFoundedGT σ]
{φ : MvPowerSeries σ R}
(hφ : φ ≠ 0)
:
∃ (ne : (⇑toLex '' Function.support φ).Nonempty), φ.lexOrder = ↑(⋯.min (⇑toLex '' Function.support φ) ne)
@[simp]
theorem
MvPowerSeries.lexOrder_eq_top_iff_eq_zero
{σ : Type u_1}
{R : Type u_2}
[Semiring R]
[LinearOrder σ]
[WellFoundedGT σ]
(φ : MvPowerSeries σ R)
:
theorem
MvPowerSeries.lexOrder_zero
{σ : Type u_1}
{R : Type u_2}
[Semiring R]
[LinearOrder σ]
[WellFoundedGT σ]
:
theorem
MvPowerSeries.exists_finsupp_eq_lexOrder_of_ne_zero
{σ : Type u_1}
{R : Type u_2}
[Semiring R]
[LinearOrder σ]
[WellFoundedGT σ]
{φ : MvPowerSeries σ R}
(hφ : φ ≠ 0)
:
theorem
MvPowerSeries.coeff_ne_zero_of_lexOrder
{σ : Type u_1}
{R : Type u_2}
[Semiring R]
[LinearOrder σ]
[WellFoundedGT σ]
{φ : MvPowerSeries σ R}
{d : σ →₀ ℕ}
(h : ↑(toLex d) = φ.lexOrder)
:
(MvPowerSeries.coeff R d) φ ≠ 0
theorem
MvPowerSeries.coeff_eq_zero_of_lt_lexOrder
{σ : Type u_1}
{R : Type u_2}
[Semiring R]
[LinearOrder σ]
[WellFoundedGT σ]
{φ : MvPowerSeries σ R}
{d : σ →₀ ℕ}
(h : ↑(toLex d) < φ.lexOrder)
:
(MvPowerSeries.coeff R d) φ = 0
theorem
MvPowerSeries.lexOrder_le_of_coeff_ne_zero
{σ : Type u_1}
{R : Type u_2}
[Semiring R]
[LinearOrder σ]
[WellFoundedGT σ]
{φ : MvPowerSeries σ R}
{d : σ →₀ ℕ}
(h : (MvPowerSeries.coeff R d) φ ≠ 0)
:
φ.lexOrder ≤ ↑(toLex d)
theorem
MvPowerSeries.le_lexOrder_iff
{σ : Type u_1}
{R : Type u_2}
[Semiring R]
[LinearOrder σ]
[WellFoundedGT σ]
{φ : MvPowerSeries σ R}
{w : WithTop (Lex (σ →₀ ℕ))}
:
theorem
MvPowerSeries.min_lexOrder_le
{σ : Type u_1}
{R : Type u_2}
[Semiring R]
[LinearOrder σ]
[WellFoundedGT σ]
{φ ψ : MvPowerSeries σ R}
:
theorem
MvPowerSeries.coeff_mul_of_add_lexOrder
{σ : Type u_1}
{R : Type u_2}
[Semiring R]
[LinearOrder σ]
[WellFoundedGT σ]
{φ ψ : MvPowerSeries σ R}
{p q : σ →₀ ℕ}
(hp : φ.lexOrder = ↑(toLex p))
(hq : ψ.lexOrder = ↑(toLex q))
:
(MvPowerSeries.coeff R (p + q)) (φ * ψ) = (MvPowerSeries.coeff R p) φ * (MvPowerSeries.coeff R q) ψ
theorem
MvPowerSeries.le_lexOrder_mul
{σ : Type u_1}
{R : Type u_2}
[Semiring R]
[LinearOrder σ]
[WellFoundedGT σ]
(φ ψ : MvPowerSeries σ R)
:
theorem
MvPowerSeries.lexOrder_mul_ge
{σ : Type u_1}
{R : Type u_2}
[Semiring R]
[LinearOrder σ]
[WellFoundedGT σ]
(φ ψ : MvPowerSeries σ R)
:
Alias of MvPowerSeries.le_lexOrder_mul
.
theorem
MvPowerSeries.lexOrder_mul
{σ : Type u_1}
{R : Type u_2}
[Semiring R]
[LinearOrder σ]
[WellFoundedGT σ]
[NoZeroDivisors R]
(φ ψ : MvPowerSeries σ R)
: