Documentation

Mathlib.RingTheory.MvPolynomial.EulerIdentity

Euler's homogeneous identity #

Main results #

theorem MvPolynomial.IsWeightedHomogeneous.pderiv {R : Type u_1} {σ : Type u_2} {M : Type u_3} [CommSemiring R] {φ : MvPolynomial σ R} [AddCancelCommMonoid M] {w : σM} {n n' : M} {i : σ} (h : MvPolynomial.IsWeightedHomogeneous w φ n) (h' : n' + w i = n) :
theorem MvPolynomial.IsHomogeneous.pderiv {R : Type u_1} {σ : Type u_2} [CommSemiring R] {φ : MvPolynomial σ R} {n : } {i : σ} (h : φ.IsHomogeneous n) :
((MvPolynomial.pderiv i) φ).IsHomogeneous (n - 1)
theorem MvPolynomial.IsWeightedHomogeneous.sum_weight_X_mul_pderiv {R : Type u_1} {σ : Type u_2} [CommSemiring R] {φ : MvPolynomial σ R} [Fintype σ] {n : } {w : σ} (h : MvPolynomial.IsWeightedHomogeneous w φ n) :
i : σ, w i (MvPolynomial.X i * (MvPolynomial.pderiv i) φ) = n φ

Euler's identity for weighted homogeneous polynomials.

theorem MvPolynomial.IsHomogeneous.sum_X_mul_pderiv {R : Type u_1} {σ : Type u_2} [CommSemiring R] {φ : MvPolynomial σ R} [Fintype σ] {n : } (h : φ.IsHomogeneous n) :
i : σ, MvPolynomial.X i * (MvPolynomial.pderiv i) φ = n φ

Euler's identity for homogeneous polynomials.