Documentation

Mathlib.RingTheory.Localization.Away.Lemmas

More lemmas on localization away #

This file contains lemmas on localization away from an element requiring more imports.

noncomputable def IsLocalization.Away.mulNumerator {R : Type u_1} [CommRing R] (s : Set R) {Rₜ : sType u_2} [(t : s) → CommRing (Rₜ t)] [(t : s) → Algebra R (Rₜ t)] [∀ (t : s), IsLocalization.Away (↑t) (Rₜ t)] (p : (t : s) → Set (Rₜ t)) (x : (t : s) × (p t)) :
R

Given a set s in a ring R and for every t : s a set p t of fractions in a localization of R at t, this is the function sending a pair (t, y), with t : s and y : t a, to t multiplied with a numerator of y. The range of this function spans the unit ideal, if s and every p t do.

Equations
Instances For
    theorem IsLocalization.Away.span_range_mulNumerator_eq_top {R : Type u_1} [CommRing R] {s : Set R} (hsone : Ideal.span s = ) {Rₜ : sType u_2} [(t : s) → CommRing (Rₜ t)] [(t : s) → Algebra R (Rₜ t)] [∀ (t : s), IsLocalization.Away (↑t) (Rₜ t)] {p : (t : s) → Set (Rₜ t)} (htone : ∀ (r : s), Ideal.span (p r) = ) :