We gather results about the quotients of local rings.
theorem
IsLocalRing.quotient_span_eq_top_iff_span_eq_top
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[Module.Finite R S]
(s : Set S)
:
Submodule.span (R ⧸ IsLocalRing.maximalIdeal R)
(⇑(Ideal.Quotient.mk (Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R))) '' s) = ⊤ ↔ Submodule.span R s = ⊤
theorem
IsLocalRing.finrank_quotient_map
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[Module.Finite R S]
[Module.Free R S]
:
Module.finrank (R ⧸ IsLocalRing.maximalIdeal R) (S ⧸ Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R)) = Module.finrank R S
noncomputable def
IsLocalRing.basisQuotient
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[Module.Finite R S]
[Module.Free R S]
{ι : Type u_3}
[Fintype ι]
(b : Basis ι R S)
:
Basis ι (R ⧸ IsLocalRing.maximalIdeal R) (S ⧸ Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R))
Given a basis of S
, the induced basis of S / Ideal.map (algebraMap R S) p
.
Equations
- IsLocalRing.basisQuotient b = basisOfTopLeSpanOfCardEqFinrank (⇑(Ideal.Quotient.mk (Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R))) ∘ ⇑b) ⋯ ⋯
Instances For
theorem
IsLocalRing.basisQuotient_apply
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[Module.Finite R S]
[Module.Free R S]
{ι : Type u_3}
[Fintype ι]
(b : Basis ι R S)
(i : ι)
:
(IsLocalRing.basisQuotient b) i = (Ideal.Quotient.mk (Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R))) (b i)
theorem
IsLocalRing.basisQuotient_repr
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[Module.Finite R S]
[Module.Free R S]
{ι : Type u_4}
[Fintype ι]
(b : Basis ι R S)
(x : S)
(i : ι)
:
((IsLocalRing.basisQuotient b).repr ((Ideal.Quotient.mk (Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R))) x))
i = (Ideal.Quotient.mk (IsLocalRing.maximalIdeal R)) ((b.repr x) i)
@[deprecated IsLocalRing.quotient_span_eq_top_iff_span_eq_top (since := "2024-11-11")]
theorem
LocalRing.quotient_span_eq_top_iff_span_eq_top
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[Module.Finite R S]
(s : Set S)
:
Submodule.span (R ⧸ IsLocalRing.maximalIdeal R)
(⇑(Ideal.Quotient.mk (Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R))) '' s) = ⊤ ↔ Submodule.span R s = ⊤
@[deprecated IsLocalRing.finrank_quotient_map (since := "2024-11-11")]
theorem
LocalRing.finrank_quotient_map
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[Module.Finite R S]
[Module.Free R S]
:
Module.finrank (R ⧸ IsLocalRing.maximalIdeal R) (S ⧸ Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R)) = Module.finrank R S
Alias of IsLocalRing.finrank_quotient_map
.
@[deprecated IsLocalRing.basisQuotient (since := "2024-11-11")]
def
LocalRing.basisQuotient
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[Module.Finite R S]
[Module.Free R S]
{ι : Type u_3}
[Fintype ι]
(b : Basis ι R S)
:
Basis ι (R ⧸ IsLocalRing.maximalIdeal R) (S ⧸ Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R))
Alias of IsLocalRing.basisQuotient
.
Given a basis of S
, the induced basis of S / Ideal.map (algebraMap R S) p
.
Instances For
@[deprecated IsLocalRing.basisQuotient_apply (since := "2024-11-11")]
theorem
LocalRing.basisQuotient_apply
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[Module.Finite R S]
[Module.Free R S]
{ι : Type u_3}
[Fintype ι]
(b : Basis ι R S)
(i : ι)
:
(IsLocalRing.basisQuotient b) i = (Ideal.Quotient.mk (Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R))) (b i)
Alias of IsLocalRing.basisQuotient_apply
.
@[deprecated IsLocalRing.basisQuotient_repr (since := "2024-11-11")]
theorem
LocalRing.basisQuotient_repr
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[Module.Finite R S]
[Module.Free R S]
{ι : Type u_4}
[Fintype ι]
(b : Basis ι R S)
(x : S)
(i : ι)
:
((IsLocalRing.basisQuotient b).repr ((Ideal.Quotient.mk (Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R))) x))
i = (Ideal.Quotient.mk (IsLocalRing.maximalIdeal R)) ((b.repr x) i)
Alias of IsLocalRing.basisQuotient_repr
.