Documentation

Mathlib.RingTheory.Lasker

Lasker ring #

Main declarations #

Implementation details #

There is a generalization for submodules that needs to be implemented. Also, one needs to prove that the radicals of minimal decompositions are independent of the precise decomposition.

def IsLasker (R : Type u_1) [CommSemiring R] :

A ring R satisfies IsLasker R when any I : Ideal R can be decomposed into finitely many primary ideals.

Equations
Instances For
    theorem Ideal.decomposition_erase_inf {R : Type u_1} [CommSemiring R] [DecidableEq (Ideal R)] {I : Ideal R} {s : Finset (Ideal R)} (hs : s.inf id = I) :
    ts, t.inf id = I ∀ ⦃J : Ideal R⦄, J t¬(t.erase J).inf id J
    theorem Ideal.isPrimary_decomposition_pairwise_ne_radical {R : Type u_1} [CommSemiring R] {I : Ideal R} {s : Finset (Ideal R)} (hs : s.inf id = I) (hs' : ∀ ⦃J : Ideal R⦄, J sJ.IsPrimary) :
    ∃ (t : Finset (Ideal R)), t.inf id = I (∀ ⦃J : Ideal R⦄, J tJ.IsPrimary) (↑t).Pairwise ((fun (x1 x2 : Ideal R) => x1 x2) on Ideal.radical)
    theorem Ideal.exists_minimal_isPrimary_decomposition_of_isPrimary_decomposition {R : Type u_1} [CommSemiring R] [DecidableEq (Ideal R)] {I : Ideal R} {s : Finset (Ideal R)} (hs : s.inf id = I) (hs' : ∀ ⦃J : Ideal R⦄, J sJ.IsPrimary) :
    ∃ (t : Finset (Ideal R)), t.inf id = I (∀ ⦃J : Ideal R⦄, J tJ.IsPrimary) (↑t).Pairwise ((fun (x1 x2 : Ideal R) => x1 x2) on Ideal.radical) ∀ ⦃J : Ideal R⦄, J t¬(t.erase J).inf id J
    theorem Ideal.IsLasker.minimal {R : Type u_1} [CommSemiring R] [DecidableEq (Ideal R)] (h : IsLasker R) (I : Ideal R) :
    ∃ (t : Finset (Ideal R)), t.inf id = I (∀ ⦃J : Ideal R⦄, J tJ.IsPrimary) (↑t).Pairwise ((fun (x1 x2 : Ideal R) => x1 x2) on Ideal.radical) ∀ ⦃J : Ideal R⦄, J t¬(t.erase J).inf id J
    theorem InfIrred.isPrimary {R : Type u_1} [CommRing R] [IsNoetherianRing R] {I : Ideal R} (h : InfIrred I) :
    I.IsPrimary

    The Lasker--Noether theorem: every ideal in a Noetherian ring admits a decomposition into primary ideals.