Kaehler differential module under base change #
Main results #
KaehlerDifferential.tensorKaehlerEquiv
:(S ⊗[R] Ω[A⁄R]) ≃ₗ[S] Ω[B⁄S]
forB = S ⊗[R] A
.KaehlerDifferential.isLocalizedModule_of_isLocalizedModule
:Ω[Aₚ/Rₚ]
is the localization ofΩ[A/R]
atp
.
@[reducible, inline]
noncomputable abbrev
KaehlerDifferential.mulActionBaseChange
(R : Type u_1)
(S : Type u_2)
(A : Type u_3)
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing A]
[Algebra R A]
:
MulAction A (TensorProduct R S (Ω[A⁄R]))
(Implementation). A
-action on S ⊗[R] Ω[A⁄R]
.
Equations
- KaehlerDifferential.mulActionBaseChange R S A = Equiv.mulAction A (TensorProduct.comm R S (Ω[A⁄R])).toEquiv
Instances For
@[reducible, inline]
noncomputable abbrev
KaehlerDifferential.moduleBaseChange
(R : Type u_1)
(S : Type u_2)
(A : Type u_3)
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing A]
[Algebra R A]
:
Module A (TensorProduct R S (Ω[A⁄R]))
(Implementation). A
-module structure on S ⊗[R] Ω[A⁄R]
.
Equations
- KaehlerDifferential.moduleBaseChange R S A = Module.mk ⋯ ⋯
Instances For
@[reducible]
noncomputable def
KaehlerDifferential.moduleBaseChange'
(R : Type u_1)
(S : Type u_2)
(A : Type u_3)
(B : Type u_4)
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing A]
[CommRing B]
[Algebra R A]
[Algebra R B]
[Algebra A B]
[Algebra S B]
[IsScalarTower R A B]
[IsScalarTower R S B]
[Algebra.IsPushout R S A B]
:
Module B (TensorProduct R S (Ω[A⁄R]))
(Implementation). B = S ⊗[R] A
-module structure on S ⊗[R] Ω[A⁄R]
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
KaehlerDifferential.instIsScalarTowerTensorProduct_1
(R : Type u_1)
(S : Type u_2)
(A : Type u_3)
(B : Type u_4)
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing A]
[CommRing B]
[Algebra R A]
[Algebra R B]
[Algebra A B]
[Algebra S B]
[IsScalarTower R A B]
[IsScalarTower R S B]
[Algebra.IsPushout R S A B]
:
IsScalarTower A B (TensorProduct R S (Ω[A⁄R]))
Equations
- ⋯ = ⋯
instance
KaehlerDifferential.instIsScalarTowerTensorProduct_2
(R : Type u_1)
(S : Type u_2)
(A : Type u_3)
(B : Type u_4)
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing A]
[CommRing B]
[Algebra R A]
[Algebra R B]
[Algebra A B]
[Algebra S B]
[IsScalarTower R A B]
[IsScalarTower R S B]
[Algebra.IsPushout R S A B]
:
IsScalarTower S B (TensorProduct R S (Ω[A⁄R]))
Equations
- ⋯ = ⋯
theorem
KaehlerDifferential.map_liftBaseChange_smul
(R : Type u_1)
(S : Type u_2)
(A : Type u_3)
(B : Type u_4)
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing A]
[CommRing B]
[Algebra R A]
[Algebra R B]
[Algebra A B]
[Algebra S B]
[IsScalarTower R A B]
[IsScalarTower R S B]
[h : Algebra.IsPushout R S A B]
(b : B)
(x : TensorProduct R S (Ω[A⁄R]))
:
(LinearMap.liftBaseChange S (↑R (KaehlerDifferential.map R S A B))) (b • x) = b • (LinearMap.liftBaseChange S (↑R (KaehlerDifferential.map R S A B))) x
noncomputable def
KaehlerDifferential.derivationTensorProduct
(R : Type u_1)
(S : Type u_2)
(A : Type u_3)
(B : Type u_4)
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing A]
[CommRing B]
[Algebra R A]
[Algebra R B]
[Algebra A B]
[Algebra S B]
[IsScalarTower R A B]
[IsScalarTower R S B]
[h : Algebra.IsPushout R S A B]
:
Derivation S B (TensorProduct R S (Ω[A⁄R]))
(Implementation).
The S
-derivation B = S ⊗[R] A
to S ⊗[R] Ω[A⁄R]
sending a ⊗ b
to a ⊗ d b
.
Equations
- KaehlerDifferential.derivationTensorProduct R S A B = { toLinearMap := ⋯.lift ((TensorProduct.mk R S (Ω[A⁄R])) 1 ∘ₗ ↑(KaehlerDifferential.D R A)), map_one_eq_zero' := ⋯, leibniz' := ⋯ }
Instances For
theorem
KaehlerDifferential.derivationTensorProduct_algebraMap
(R : Type u_1)
(S : Type u_2)
(A : Type u_3)
(B : Type u_4)
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing A]
[CommRing B]
[Algebra R A]
[Algebra R B]
[Algebra A B]
[Algebra S B]
[IsScalarTower R A B]
[IsScalarTower R S B]
[Algebra.IsPushout R S A B]
(x : A)
:
(KaehlerDifferential.derivationTensorProduct R S A B) ((algebraMap A B) x) = 1 ⊗ₜ[R] (KaehlerDifferential.D R A) x
theorem
KaehlerDifferential.tensorKaehlerEquiv_left_inv
(R : Type u_1)
(S : Type u_2)
(A : Type u_3)
(B : Type u_4)
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing A]
[CommRing B]
[Algebra R A]
[Algebra R B]
[Algebra A B]
[Algebra S B]
[IsScalarTower R A B]
[IsScalarTower R S B]
[Algebra.IsPushout R S A B]
:
↑S (KaehlerDifferential.derivationTensorProduct R S A B).liftKaehlerDifferential ∘ₗ
LinearMap.liftBaseChange S (↑R (KaehlerDifferential.map R S A B)) = LinearMap.id
noncomputable def
KaehlerDifferential.tensorKaehlerEquiv
(R : Type u_1)
(S : Type u_2)
(A : Type u_3)
(B : Type u_4)
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing A]
[CommRing B]
[Algebra R A]
[Algebra R B]
[Algebra A B]
[Algebra S B]
[IsScalarTower R A B]
[IsScalarTower R S B]
[h : Algebra.IsPushout R S A B]
:
The canonical isomorphism (S ⊗[R] Ω[A⁄R]) ≃ₗ[S] Ω[B⁄S]
for B = S ⊗[R] A
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
KaehlerDifferential.tensorKaehlerEquiv_symm_apply
(R : Type u_1)
(S : Type u_2)
(A : Type u_3)
(B : Type u_4)
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing A]
[CommRing B]
[Algebra R A]
[Algebra R B]
[Algebra A B]
[Algebra S B]
[IsScalarTower R A B]
[IsScalarTower R S B]
[h : Algebra.IsPushout R S A B]
(a : Ω[B⁄S])
:
(KaehlerDifferential.tensorKaehlerEquiv R S A B).symm a = (KaehlerDifferential.derivationTensorProduct R S A B).liftKaehlerDifferential a
@[simp]
theorem
KaehlerDifferential.tensorKaehlerEquiv_tmul
(R : Type u_1)
(S : Type u_2)
(A : Type u_3)
(B : Type u_4)
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing A]
[CommRing B]
[Algebra R A]
[Algebra R B]
[Algebra A B]
[Algebra S B]
[IsScalarTower R A B]
[IsScalarTower R S B]
[Algebra.IsPushout R S A B]
(a : S)
(b : Ω[A⁄R])
:
(KaehlerDifferential.tensorKaehlerEquiv R S A B) (a ⊗ₜ[R] b) = a • (KaehlerDifferential.map R S A B) b
theorem
KaehlerDifferential.isBaseChange
(R : Type u_1)
(S : Type u_2)
(A : Type u_3)
(B : Type u_4)
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing A]
[CommRing B]
[Algebra R A]
[Algebra R B]
[Algebra A B]
[Algebra S B]
[IsScalarTower R A B]
[IsScalarTower R S B]
[h : Algebra.IsPushout R S A B]
:
IsBaseChange S (↑R (KaehlerDifferential.map R S A B))
If B
is the tensor product of S
and A
over R
,
then Ω[B⁄S]
is the base change of Ω[A⁄R]
along R → S
.
instance
KaehlerDifferential.isLocalizedModule
(R : Type u_1)
(S : Type u_2)
(A : Type u_3)
(B : Type u_4)
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing A]
[CommRing B]
[Algebra R A]
[Algebra R B]
[Algebra A B]
[Algebra S B]
[IsScalarTower R A B]
[IsScalarTower R S B]
(p : Submonoid R)
[IsLocalization p S]
[IsLocalization (Algebra.algebraMapSubmonoid A p) B]
:
IsLocalizedModule p (↑R (KaehlerDifferential.map R S A B))
Equations
- ⋯ = ⋯
instance
KaehlerDifferential.isLocalizedModule_of_isLocalizedModule
(R : Type u_1)
(S : Type u_2)
(A : Type u_3)
(B : Type u_4)
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing A]
[CommRing B]
[Algebra R A]
[Algebra R B]
[Algebra A B]
[Algebra S B]
[IsScalarTower R A B]
[IsScalarTower R S B]
(p : Submonoid R)
[IsLocalization p S]
[IsLocalizedModule p (IsScalarTower.toAlgHom R A B).toLinearMap]
:
IsLocalizedModule p (↑R (KaehlerDifferential.map R S A B))
Equations
- ⋯ = ⋯