Documentation

Mathlib.RingTheory.IntegralClosure.IntegralRestrict

Restriction of various maps between fields to integrally closed subrings. #

In this file, we assume A is an integrally closed domain; K is the fraction ring of A; L is a finite (separable) extension of K; B is the integral closure of A in L. We call this the AKLB setup.

Main definition #

noncomputable def galRestrict' (A : Type u_1) {K : Type u_2} {L : Type u_3} {L₂ : Type u_4} (B : Type u_6) (B₂ : Type u_7) [CommRing A] [CommRing B] [CommRing B₂] [Algebra A B] [Algebra A B₂] [Field K] [Field L] [Field L₂] [Algebra A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra K L₂] [Algebra A L₂] [IsScalarTower A K L₂] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [Algebra B₂ L₂] [IsScalarTower A B₂ L₂] [IsIntegralClosure B₂ A L₂] (f : L →ₐ[K] L₂) :
B →ₐ[A] B₂

A generalization of galRestrictHom beyond endomorphisms.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem algebraMap_galRestrict'_apply (A : Type u_1) {K : Type u_2} {L : Type u_3} {L₂ : Type u_4} (B : Type u_6) (B₂ : Type u_7) [CommRing A] [CommRing B] [CommRing B₂] [Algebra A B] [Algebra A B₂] [Field K] [Field L] [Field L₂] [Algebra A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra K L₂] [Algebra A L₂] [IsScalarTower A K L₂] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [Algebra B₂ L₂] [IsScalarTower A B₂ L₂] [IsIntegralClosure B₂ A L₂] (σ : L →ₐ[K] L₂) (x : B) :
    (algebraMap B₂ L₂) ((galRestrict' A B B₂ σ) x) = σ ((algebraMap B L) x)
    theorem galRestrict'_comp (A : Type u_1) {K : Type u_2} {L : Type u_3} {L₂ : Type u_4} {L₃ : Type u_5} (B : Type u_6) (B₂ : Type u_7) (B₃ : Type u_8) [CommRing A] [CommRing B] [CommRing B₂] [CommRing B₃] [Algebra A B] [Algebra A B₂] [Algebra A B₃] [Field K] [Field L] [Field L₂] [Field L₃] [Algebra A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra K L₂] [Algebra A L₂] [IsScalarTower A K L₂] [Algebra K L₃] [Algebra A L₃] [IsScalarTower A K L₃] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [Algebra B₂ L₂] [IsScalarTower A B₂ L₂] [IsIntegralClosure B₂ A L₂] [Algebra B₃ L₃] [IsScalarTower A B₃ L₃] [IsIntegralClosure B₃ A L₃] (σ : L →ₐ[K] L₂) (σ' : L₂ →ₐ[K] L₃) :
    galRestrict' A B B₃ (σ'.comp σ) = (galRestrict' A B₂ B₃ σ').comp (galRestrict' A B B₂ σ)
    noncomputable def galLift {A : Type u_1} (K : Type u_2) (L : Type u_3) (L₂ : Type u_4) {B : Type u_6} {B₂ : Type u_7} [CommRing A] [CommRing B] [CommRing B₂] [Algebra A B] [Algebra A B₂] [Field K] [Field L] [Field L₂] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra K L₂] [Algebra A L₂] [IsScalarTower A K L₂] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [Algebra B₂ L₂] [IsScalarTower A B₂ L₂] [Algebra.IsAlgebraic K L] (σ : B →ₐ[A] B₂) :
    L →ₐ[K] L₂

    A generalization of the the lift End(B/A) → End(L/K) in an ALKB setup. This is inverse to the restriction. See galRestrictHom.

    Equations
    Instances For
      @[simp]
      theorem galLift_algebraMap_apply {A : Type u_1} (K : Type u_2) (L : Type u_3) (L₂ : Type u_4) {B : Type u_6} {B₂ : Type u_7} [CommRing A] [CommRing B] [CommRing B₂] [Algebra A B] [Algebra A B₂] [Field K] [Field L] [Field L₂] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra K L₂] [Algebra A L₂] [IsScalarTower A K L₂] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [Algebra B₂ L₂] [IsScalarTower A B₂ L₂] [Algebra.IsAlgebraic K L] (σ : B →ₐ[A] B₂) (x : B) :
      (galLift K L L₂ σ) ((algebraMap B L) x) = (algebraMap B₂ L₂) (σ x)
      theorem galLift_comp {A : Type u_1} (K : Type u_2) (L : Type u_3) (L₂ : Type u_4) (L₃ : Type u_5) {B : Type u_6} {B₂ : Type u_7} {B₃ : Type u_8} [CommRing A] [CommRing B] [CommRing B₂] [CommRing B₃] [Algebra A B] [Algebra A B₂] [Algebra A B₃] [Field K] [Field L] [Field L₂] [Field L₃] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra K L₂] [Algebra A L₂] [IsScalarTower A K L₂] [Algebra K L₃] [Algebra A L₃] [IsScalarTower A K L₃] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [Algebra B₂ L₂] [IsScalarTower A B₂ L₂] [IsIntegralClosure B₂ A L₂] [Algebra B₃ L₃] [IsScalarTower A B₃ L₃] [Algebra.IsAlgebraic K L] [Algebra.IsAlgebraic K L₂] (σ : B →ₐ[A] B₂) (σ' : B₂ →ₐ[A] B₃) :
      galLift K L L₃ (σ'.comp σ) = (galLift K L₂ L₃ σ').comp (galLift K L L₂ σ)
      @[simp]
      theorem galLift_galRestrict' {A : Type u_1} (K : Type u_2) (L : Type u_3) (L₂ : Type u_4) {B : Type u_6} {B₂ : Type u_7} [CommRing A] [CommRing B] [CommRing B₂] [Algebra A B] [Algebra A B₂] [Field K] [Field L] [Field L₂] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra K L₂] [Algebra A L₂] [IsScalarTower A K L₂] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [Algebra B₂ L₂] [IsScalarTower A B₂ L₂] [IsIntegralClosure B₂ A L₂] [Algebra.IsAlgebraic K L] (σ : L →ₐ[K] L₂) :
      galLift K L L₂ (galRestrict' A B B₂ σ) = σ
      @[simp]
      theorem galRestrict'_galLift {A : Type u_1} (K : Type u_2) (L : Type u_3) (L₂ : Type u_4) {B : Type u_6} {B₂ : Type u_7} [CommRing A] [CommRing B] [CommRing B₂] [Algebra A B] [Algebra A B₂] [Field K] [Field L] [Field L₂] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra K L₂] [Algebra A L₂] [IsScalarTower A K L₂] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [Algebra B₂ L₂] [IsScalarTower A B₂ L₂] [IsIntegralClosure B₂ A L₂] [Algebra.IsAlgebraic K L] (σ : B →ₐ[A] B₂) :
      galRestrict' A B B₂ (galLift K L L₂ σ) = σ
      noncomputable def galRestrictHom (A : Type u_1) (K : Type u_2) (L : Type u_3) (B : Type u_6) [CommRing A] [CommRing B] [Algebra A B] [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [Algebra.IsAlgebraic K L] :
      (L →ₐ[K] L) ≃* (B →ₐ[A] B)

      The restriction End(L/K) → End(B/A) in an AKLB setup. Also see galRestrict for the AlgEquiv version.

      Equations
      Instances For
        theorem galRestrictHom_apply (A : Type u_1) (K : Type u_2) (L : Type u_3) (B : Type u_6) [CommRing A] [CommRing B] [Algebra A B] [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [Algebra.IsAlgebraic K L] (f : L →ₐ[K] L) :
        (galRestrictHom A K L B) f = galRestrict' A B B f
        theorem galRestrictHom_symm_apply (A : Type u_1) (K : Type u_2) (L : Type u_3) (B : Type u_6) [CommRing A] [CommRing B] [Algebra A B] [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [Algebra.IsAlgebraic K L] (σ : B →ₐ[A] B) :
        (galRestrictHom A K L B).symm σ = galLift K L L σ
        @[simp]
        theorem algebraMap_galRestrictHom_apply (A : Type u_1) (K : Type u_2) (L : Type u_3) (B : Type u_6) [CommRing A] [CommRing B] [Algebra A B] [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [Algebra.IsAlgebraic K L] (σ : L →ₐ[K] L) (x : B) :
        (algebraMap B L) (((galRestrictHom A K L B) σ) x) = σ ((algebraMap B L) x)
        @[simp]
        theorem galRestrictHom_symm_algebraMap_apply (A : Type u_1) (K : Type u_2) (L : Type u_3) (B : Type u_6) [CommRing A] [CommRing B] [Algebra A B] [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [Algebra.IsAlgebraic K L] (σ : B →ₐ[A] B) (x : B) :
        ((galRestrictHom A K L B).symm σ) ((algebraMap B L) x) = (algebraMap B L) (σ x)
        noncomputable def galRestrict (A : Type u_1) (K : Type u_2) (L : Type u_3) (B : Type u_6) [CommRing A] [CommRing B] [Algebra A B] [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [Algebra.IsAlgebraic K L] :
        (L ≃ₐ[K] L) ≃* B ≃ₐ[A] B

        The restriction Aut(L/K) → Aut(B/A) in an AKLB setup.

        Equations
        Instances For
          theorem coe_galRestrict_apply (A : Type u_1) {K : Type u_2} {L : Type u_3} (B : Type u_6) [CommRing A] [CommRing B] [Algebra A B] [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [Algebra.IsAlgebraic K L] (σ : L ≃ₐ[K] L) :
          ((galRestrict A K L B) σ) = (galRestrictHom A K L B) σ
          theorem galRestrict_apply (A : Type u_1) {K : Type u_2} {L : Type u_3} {B : Type u_6} [CommRing A] [CommRing B] [Algebra A B] [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [Algebra.IsAlgebraic K L] (σ : L ≃ₐ[K] L) (x : B) :
          ((galRestrict A K L B) σ) x = ((galRestrictHom A K L B) σ) x
          theorem algebraMap_galRestrict_apply (A : Type u_1) {K : Type u_2} {L : Type u_3} {B : Type u_6} [CommRing A] [CommRing B] [Algebra A B] [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [Algebra.IsAlgebraic K L] (σ : L ≃ₐ[K] L) (x : B) :
          (algebraMap B L) (((galRestrict A K L B) σ) x) = σ ((algebraMap B L) x)
          theorem prod_galRestrict_eq_norm (A : Type u_1) (K : Type u_2) (L : Type u_3) (B : Type u_6) [CommRing A] [CommRing B] [Algebra A B] [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [FiniteDimensional K L] [IsGalois K L] [IsIntegrallyClosed A] (x : B) :
          σ : L ≃ₐ[K] L, ((galRestrict A K L B) σ) x = (algebraMap A B) (IsIntegralClosure.mk' A ((Algebra.norm K) ((algebraMap B L) x)) )
          @[instance 900]
          Equations
          • One or more equations did not get rendered due to their size.
          noncomputable def Algebra.intTraceAux (A : Type u_1) (K : Type u_2) (L : Type u_3) (B : Type u_6) [CommRing A] [CommRing B] [Algebra A B] [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [FiniteDimensional K L] [IsIntegrallyClosed A] :

          The restriction of the trace on L/K restricted onto B/A in an AKLB setup. See Algebra.intTrace instead.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem Algebra.map_intTraceAux {A : Type u_1} {K : Type u_2} {L : Type u_3} {B : Type u_6} [CommRing A] [CommRing B] [Algebra A B] [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [FiniteDimensional K L] [IsIntegrallyClosed A] (x : B) :
            (algebraMap A K) ((intTraceAux A K L B) x) = (trace K L) ((algebraMap B L) x)
            noncomputable def Algebra.intTrace (A : Type u_1) (B : Type u_6) [CommRing A] [CommRing B] [Algebra A B] [IsDomain A] [IsIntegrallyClosed A] [IsDomain B] [IsIntegrallyClosed B] [Module.Finite A B] [NoZeroSMulDivisors A B] :

            The trace of a finite extension of integrally closed domains B/A is the restriction of the trace on Frac(B)/Frac(A) onto B/A. See Algebra.algebraMap_intTrace.

            Equations
            Instances For
              theorem Algebra.algebraMap_intTrace {A : Type u_1} {K : Type u_2} {L : Type u_3} {B : Type u_6} [CommRing A] [CommRing B] [Algebra A B] [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [FiniteDimensional K L] [IsDomain A] [IsIntegrallyClosed A] [IsDomain B] [IsIntegrallyClosed B] [Module.Finite A B] [NoZeroSMulDivisors A B] (x : B) :
              (algebraMap A K) ((intTrace A B) x) = (trace K L) ((algebraMap B L) x)
              theorem Algebra.intTrace_eq_of_isLocalization (A : Type u_1) (B : Type u_6) [CommRing A] [CommRing B] [Algebra A B] {Aₘ : Type u_9} {Bₘ : Type u_10} [CommRing Aₘ] [CommRing Bₘ] [Algebra Aₘ Bₘ] [Algebra A Aₘ] [Algebra B Bₘ] [Algebra A Bₘ] [IsScalarTower A Aₘ Bₘ] [IsScalarTower A B Bₘ] (M : Submonoid A) [IsLocalization M Aₘ] [IsLocalization (algebraMapSubmonoid B M) Bₘ] [IsDomain A] [IsIntegrallyClosed A] [IsDomain B] [IsIntegrallyClosed B] [Module.Finite A B] [NoZeroSMulDivisors A B] [IsDomain Aₘ] [IsIntegrallyClosed Aₘ] [IsDomain Bₘ] [IsIntegrallyClosed Bₘ] [NoZeroSMulDivisors Aₘ Bₘ] [Module.Finite Aₘ Bₘ] (x : B) :
              (algebraMap A Aₘ) ((intTrace A B) x) = (intTrace Aₘ Bₘ) ((algebraMap B Bₘ) x)
              noncomputable def Algebra.intNormAux (A : Type u_1) (K : Type u_2) (L : Type u_3) (B : Type u_6) [CommRing A] [CommRing B] [Algebra A B] [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [FiniteDimensional K L] [IsIntegrallyClosed A] [Algebra.IsSeparable K L] :
              B →* A

              The restriction of the norm on L/K restricted onto B/A in an AKLB setup. See Algebra.intNorm instead.

              Equations
              Instances For
                theorem Algebra.map_intNormAux {A : Type u_1} {K : Type u_2} {L : Type u_3} {B : Type u_6} [CommRing A] [CommRing B] [Algebra A B] [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [FiniteDimensional K L] [IsIntegrallyClosed A] [Algebra.IsSeparable K L] (x : B) :
                (algebraMap A K) ((intNormAux A K L B) x) = (norm K) ((algebraMap B L) x)

                The norm of a finite extension of integrally closed domains B/A is the restriction of the norm on Frac(B)/Frac(A) onto B/A. See Algebra.algebraMap_intNorm.

                Equations
                Instances For
                  theorem Algebra.algebraMap_intNorm {A : Type u_1} {K : Type u_2} {L : Type u_3} {B : Type u_6} [CommRing A] [CommRing B] [Algebra A B] [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra K L] [Algebra A L] [IsScalarTower A K L] [Algebra B L] [IsScalarTower A B L] [IsIntegralClosure B A L] [FiniteDimensional K L] [IsIntegrallyClosed A] [IsDomain A] [IsDomain B] [IsIntegrallyClosed B] [Module.Finite A B] [NoZeroSMulDivisors A B] [Algebra.IsSeparable (FractionRing A) (FractionRing B)] (x : B) :
                  (algebraMap A K) ((intNorm A B) x) = (norm K) ((algebraMap B L) x)
                  theorem Algebra.intNorm_eq_of_isLocalization {A : Type u_1} {B : Type u_6} [CommRing A] [CommRing B] [Algebra A B] {Aₘ : Type u_9} {Bₘ : Type u_10} [CommRing Aₘ] [CommRing Bₘ] [Algebra Aₘ Bₘ] [Algebra A Aₘ] [Algebra B Bₘ] [Algebra A Bₘ] [IsScalarTower A Aₘ Bₘ] [IsScalarTower A B Bₘ] (M : Submonoid A) [IsLocalization M Aₘ] [IsLocalization (algebraMapSubmonoid B M) Bₘ] [IsIntegrallyClosed A] [IsDomain A] [IsDomain B] [IsIntegrallyClosed B] [Module.Finite A B] [NoZeroSMulDivisors A B] [Algebra.IsSeparable (FractionRing A) (FractionRing B)] [IsDomain Aₘ] [IsIntegrallyClosed Aₘ] [IsDomain Bₘ] [IsIntegrallyClosed Bₘ] [NoZeroSMulDivisors Aₘ Bₘ] [Module.Finite Aₘ Bₘ] [Algebra.IsSeparable (FractionRing Aₘ) (FractionRing Bₘ)] (x : B) :
                  (algebraMap A Aₘ) ((intNorm A B) x) = (intNorm Aₘ Bₘ) ((algebraMap B Bₘ) x)