The module I ⧸ I ^ 2
#
In this file, we provide special API support for the module I ⧸ I ^ 2
. The official
definition is a quotient module of I
, but the alternative definition as an ideal of R ⧸ I ^ 2
is
also given, and the two are R
-equivalent as in Ideal.cotangentEquivIdeal
.
Additional support is also given to the cotangent space m ⧸ m ^ 2
of a local ring.
Equations
- I.instAddCommGroupCotangent = id inferInstance
Equations
- I.cotangentModule = id inferInstance
Equations
I ⧸ I ^ 2
as an ideal of R ⧸ I ^ 2
.
Equations
- I.cotangentIdeal = Submodule.map (Ideal.Quotient.mk (I ^ 2)).toSemilinearMap I
Instances For
Alias of Ideal.range_cotangentToQuotientSquare
.
The equivalence of the two definitions of I / I ^ 2
, either as the quotient of I
or the
ideal of R / I ^ 2
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The lift of f : A →ₐ[R] B
to A ⧸ J ^ 2 →ₐ[R] B
with J
being the kernel of f
.
Equations
- f.kerSquareLift = { toRingHom := Ideal.Quotient.lift (RingHom.ker f.toRingHom ^ 2) f.toRingHom ⋯, commutes' := ⋯ }
Instances For
Equations
- Ideal.Algebra.kerSquareLift = (Algebra.ofId R A).kerSquareLift.toAlgebra
The quotient ring of I ⧸ I ^ 2
is R ⧸ I
.
Equations
- I.quotCotangent = (Ideal.quotEquivOfEq ⋯).trans ((DoubleQuot.quotQuotEquivQuotSup (I ^ 2) I).trans (Ideal.quotEquivOfEq ⋯))
Instances For
The map I/I² → J/J²
if I ≤ f⁻¹(J)
.
Equations
- I₁.mapCotangent I₂ f h = (Submodule.restrictScalars R (I₁ • ⊤)).mapQ (Submodule.restrictScalars R (I₂ • ⊤)) (f.toLinearMap.restrict h) ⋯
Instances For
The A ⧸ I
-vector space I ⧸ I ^ 2
.
Equations
- IsLocalRing.CotangentSpace R = (IsLocalRing.maximalIdeal R).Cotangent
Instances For
Equations
- IsLocalRing.instModuleResidueFieldCotangentSpace R = (IsLocalRing.maximalIdeal R).cotangentModule
Alias of IsLocalRing.CotangentSpace
.
The A ⧸ I
-vector space I ⧸ I ^ 2
.