Documentation

Mathlib.RingTheory.HahnSeries.Summable

Summable families of Hahn Series #

We introduce a notion of formal summability for families of Hahn series, and define a formal sum function. This theory is applied to characterize invertible Hahn series whose coefficients are in a commutative domain.

Main Definitions #

Main results #

TODO #

References #

theorem HahnSeries.isPWO_iUnion_support_powers {Γ : Type u_1} {R : Type u_2} [LinearOrderedCancelAddCommMonoid Γ] [Ring R] [IsDomain R] {x : HahnSeries Γ R} (hx : 0 < x.orderTop) :
(⋃ (n : ), (x ^ n).support).IsPWO
structure HahnSeries.SummableFamily (Γ : Type u_1) (R : Type u_2) [PartialOrder Γ] [AddCommMonoid R] (α : Type u_3) :
Type (max (max u_1 u_2) u_3)

A family of Hahn series whose formal coefficient-wise sum is a Hahn series. For each coefficient of the sum to be well-defined, we require that only finitely many series are nonzero at any given coefficient. For the formal sum to be a Hahn series, we require that the union of the supports of the constituent series is partially well-ordered.

  • toFun : αHahnSeries Γ R

    A parametrized family of Hahn series.

  • isPWO_iUnion_support' : (⋃ (a : α), (self.toFun a).support).IsPWO
  • finite_co_support' : ∀ (g : Γ), {a : α | (self.toFun a).coeff g 0}.Finite
Instances For
    theorem HahnSeries.SummableFamily.isPWO_iUnion_support' {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} (self : HahnSeries.SummableFamily Γ R α) :
    (⋃ (a : α), (self.toFun a).support).IsPWO
    theorem HahnSeries.SummableFamily.finite_co_support' {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} (self : HahnSeries.SummableFamily Γ R α) (g : Γ) :
    {a : α | (self.toFun a).coeff g 0}.Finite
    instance HahnSeries.SummableFamily.instFunLike {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} :
    Equations
    • HahnSeries.SummableFamily.instFunLike = { coe := HahnSeries.SummableFamily.toFun, coe_injective' := }
    theorem HahnSeries.SummableFamily.isPWO_iUnion_support {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} (s : HahnSeries.SummableFamily Γ R α) :
    (⋃ (a : α), (s a).support).IsPWO
    theorem HahnSeries.SummableFamily.finite_co_support {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} (s : HahnSeries.SummableFamily Γ R α) (g : Γ) :
    (Function.support fun (a : α) => (s a).coeff g).Finite
    theorem HahnSeries.SummableFamily.coe_injective {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} :
    Function.Injective DFunLike.coe
    theorem HahnSeries.SummableFamily.ext_iff {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} {s : HahnSeries.SummableFamily Γ R α} {t : HahnSeries.SummableFamily Γ R α} :
    s = t ∀ (a : α), s a = t a
    theorem HahnSeries.SummableFamily.ext {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} {s : HahnSeries.SummableFamily Γ R α} {t : HahnSeries.SummableFamily Γ R α} (h : ∀ (a : α), s a = t a) :
    s = t
    instance HahnSeries.SummableFamily.instAdd {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} :
    Equations
    • HahnSeries.SummableFamily.instAdd = { add := fun (x y : HahnSeries.SummableFamily Γ R α) => { toFun := x + y, isPWO_iUnion_support' := , finite_co_support' := } }
    instance HahnSeries.SummableFamily.instZero {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} :
    Equations
    • HahnSeries.SummableFamily.instZero = { zero := { toFun := 0, isPWO_iUnion_support' := , finite_co_support' := } }
    Equations
    • HahnSeries.SummableFamily.instInhabited = { default := 0 }
    @[simp]
    theorem HahnSeries.SummableFamily.coe_add {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} {s : HahnSeries.SummableFamily Γ R α} {t : HahnSeries.SummableFamily Γ R α} :
    (s + t) = s + t
    theorem HahnSeries.SummableFamily.add_apply {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} {s : HahnSeries.SummableFamily Γ R α} {t : HahnSeries.SummableFamily Γ R α} {a : α} :
    (s + t) a = s a + t a
    @[simp]
    theorem HahnSeries.SummableFamily.coe_zero {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} :
    0 = 0
    theorem HahnSeries.SummableFamily.zero_apply {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} {a : α} :
    0 a = 0
    Equations
    def HahnSeries.SummableFamily.hsum {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} (s : HahnSeries.SummableFamily Γ R α) :

    The infinite sum of a SummableFamily of Hahn series.

    Equations
    • s.hsum = { coeff := fun (g : Γ) => ∑ᶠ (i : α), (s i).coeff g, isPWO_support' := }
    Instances For
      @[simp]
      theorem HahnSeries.SummableFamily.hsum_coeff {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} {s : HahnSeries.SummableFamily Γ R α} {g : Γ} :
      s.hsum.coeff g = ∑ᶠ (i : α), (s i).coeff g
      theorem HahnSeries.SummableFamily.support_hsum_subset {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} {s : HahnSeries.SummableFamily Γ R α} :
      s.hsum.support ⋃ (a : α), (s a).support
      @[simp]
      theorem HahnSeries.SummableFamily.hsum_add {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} {s : HahnSeries.SummableFamily Γ R α} {t : HahnSeries.SummableFamily Γ R α} :
      (s + t).hsum = s.hsum + t.hsum
      instance HahnSeries.SummableFamily.instNeg {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommGroup R] {α : Type u_3} :
      Equations
      • HahnSeries.SummableFamily.instNeg = { neg := fun (s : HahnSeries.SummableFamily Γ R α) => { toFun := fun (a : α) => -s a, isPWO_iUnion_support' := , finite_co_support' := } }
      Equations
      @[simp]
      theorem HahnSeries.SummableFamily.coe_neg {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommGroup R] {α : Type u_3} {s : HahnSeries.SummableFamily Γ R α} :
      (-s) = -s
      theorem HahnSeries.SummableFamily.neg_apply {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommGroup R] {α : Type u_3} {s : HahnSeries.SummableFamily Γ R α} {a : α} :
      (-s) a = -s a
      @[simp]
      theorem HahnSeries.SummableFamily.coe_sub {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommGroup R] {α : Type u_3} {s : HahnSeries.SummableFamily Γ R α} {t : HahnSeries.SummableFamily Γ R α} :
      (s - t) = s - t
      theorem HahnSeries.SummableFamily.sub_apply {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommGroup R] {α : Type u_3} {s : HahnSeries.SummableFamily Γ R α} {t : HahnSeries.SummableFamily Γ R α} {a : α} :
      (s - t) a = s a - t a
      Equations
      • One or more equations did not get rendered due to their size.
      @[simp]
      theorem HahnSeries.SummableFamily.smul_apply {Γ : Type u_1} {R : Type u_2} [OrderedCancelAddCommMonoid Γ] [Semiring R] {α : Type u_3} {x : HahnSeries Γ R} {s : HahnSeries.SummableFamily Γ R α} {a : α} :
      (x s) a = x * s a
      Equations
      • HahnSeries.SummableFamily.instModule = Module.mk
      @[simp]
      theorem HahnSeries.SummableFamily.hsum_smul {Γ : Type u_1} {R : Type u_2} [OrderedCancelAddCommMonoid Γ] [Semiring R] {α : Type u_3} {x : HahnSeries Γ R} {s : HahnSeries.SummableFamily Γ R α} :
      (x s).hsum = x * s.hsum
      @[simp]
      theorem HahnSeries.SummableFamily.lsum_apply {Γ : Type u_1} {R : Type u_2} [OrderedCancelAddCommMonoid Γ] [Semiring R] {α : Type u_3} (s : HahnSeries.SummableFamily Γ R α) :
      HahnSeries.SummableFamily.lsum s = s.hsum

      The summation of a summable_family as a LinearMap.

      Equations
      • HahnSeries.SummableFamily.lsum = { toFun := HahnSeries.SummableFamily.hsum, map_add' := , map_smul' := }
      Instances For
        @[simp]
        theorem HahnSeries.SummableFamily.hsum_sub {Γ : Type u_1} [OrderedCancelAddCommMonoid Γ] {α : Type u_3} {R : Type u_4} [Ring R] {s : HahnSeries.SummableFamily Γ R α} {t : HahnSeries.SummableFamily Γ R α} :
        (s - t).hsum = s.hsum - t.hsum
        def HahnSeries.SummableFamily.ofFinsupp {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} (f : α →₀ HahnSeries Γ R) :

        A family with only finitely many nonzero elements is summable.

        Equations
        Instances For
          @[simp]
          @[simp]
          theorem HahnSeries.SummableFamily.hsum_ofFinsupp {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} {f : α →₀ HahnSeries Γ R} :
          (HahnSeries.SummableFamily.ofFinsupp f).hsum = f.sum fun (x : α) => id
          def HahnSeries.SummableFamily.embDomain {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} {β : Type u_4} (s : HahnSeries.SummableFamily Γ R α) (f : α β) :

          A summable family can be reindexed by an embedding without changing its sum.

          Equations
          • s.embDomain f = { toFun := fun (b : β) => if h : b Set.range f then s (Classical.choose h) else 0, isPWO_iUnion_support' := , finite_co_support' := }
          Instances For
            theorem HahnSeries.SummableFamily.embDomain_apply {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} {β : Type u_4} (s : HahnSeries.SummableFamily Γ R α) (f : α β) {b : β} :
            (s.embDomain f) b = if h : b Set.range f then s (Classical.choose h) else 0
            @[simp]
            theorem HahnSeries.SummableFamily.embDomain_image {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} {β : Type u_4} (s : HahnSeries.SummableFamily Γ R α) (f : α β) {a : α} :
            (s.embDomain f) (f a) = s a
            @[simp]
            theorem HahnSeries.SummableFamily.embDomain_notin_range {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} {β : Type u_4} (s : HahnSeries.SummableFamily Γ R α) (f : α β) {b : β} (h : bSet.range f) :
            (s.embDomain f) b = 0
            @[simp]
            theorem HahnSeries.SummableFamily.hsum_embDomain {Γ : Type u_1} {R : Type u_2} [PartialOrder Γ] [AddCommMonoid R] {α : Type u_3} {β : Type u_4} (s : HahnSeries.SummableFamily Γ R α) (f : α β) :
            (s.embDomain f).hsum = s.hsum

            The powers of an element of positive valuation form a summable family.

            Equations
            Instances For
              @[simp]
              theorem HahnSeries.unit_aux {Γ : Type u_1} {R : Type u_2} [LinearOrderedAddCommGroup Γ] [CommRing R] [IsDomain R] (x : HahnSeries Γ R) {r : R} (hr : r * x.leadingCoeff = 1) :
              0 < (1 - (HahnSeries.single (-x.order)) r * x).orderTop
              theorem HahnSeries.isUnit_iff {Γ : Type u_1} {R : Type u_2} [LinearOrderedAddCommGroup Γ] [CommRing R] [IsDomain R] {x : HahnSeries Γ R} :
              IsUnit x IsUnit x.leadingCoeff
              instance HahnSeries.instField {Γ : Type u_1} {R : Type u_2} [LinearOrderedAddCommGroup Γ] [Field R] :
              Equations