Homogeneous Localization #
Notation #
ฮน
is a commutative monoid;R
is a commutative semiring;A
is a commutative ring and anR
-algebra;๐ : ฮน โ Submodule R A
is the grading ofA
;x : Submonoid A
is a submonoid
Main definitions and results #
This file constructs the subring of Aโ
where the numerator and denominator have the same grading,
i.e. {a/b โ Aโ | โ (i : ฮน), a โ ๐แตข โง b โ ๐แตข}
.
HomogeneousLocalization.NumDenSameDeg
: a structure with a numerator and denominator field where they are required to have the same grading.
However NumDenSameDeg ๐ x
cannot have a ring structure for many reasons, for example if c
is a NumDenSameDeg
, then generally, c + (-c)
is not necessarily 0
for degree reasons ---
0
is considered to have grade zero (see deg_zero
) but c + (-c)
has the same degree as c
. To
circumvent this, we quotient NumDenSameDeg ๐ x
by the kernel of c โฆ c.num / c.den
.
HomogeneousLocalization.NumDenSameDeg.embedding
: forx : Submonoid A
and anyc : NumDenSameDeg ๐ x
, or equivalent a numerator and a denominator of the same degree, we get an elementc.num / c.den
ofAโ
.HomogeneousLocalization
:NumDenSameDeg ๐ x
quotiented by kernel ofembedding ๐ x
.HomogeneousLocalization.val
: iff : HomogeneousLocalization ๐ x
, thenf.val
is an element ofAโ
. In another word, one can viewHomogeneousLocalization ๐ x
as a subring ofAโ
throughHomogeneousLocalization.val
.HomogeneousLocalization.num
: iff : HomogeneousLocalization ๐ x
, thenf.num : A
is the numerator off
.HomogeneousLocalization.den
: iff : HomogeneousLocalization ๐ x
, thenf.den : A
is the denominator off
.HomogeneousLocalization.deg
: iff : HomogeneousLocalization ๐ x
, thenf.deg : ฮน
is the degree off
such thatf.num โ ๐ f.deg
andf.den โ ๐ f.deg
(seeHomogeneousLocalization.num_mem_deg
andHomogeneousLocalization.den_mem_deg
).HomogeneousLocalization.num_mem_deg
: iff : HomogeneousLocalization ๐ x
, thenf.num_mem_deg
is a proof thatf.num โ ๐ f.deg
.HomogeneousLocalization.den_mem_deg
: iff : HomogeneousLocalization ๐ x
, thenf.den_mem_deg
is a proof thatf.den โ ๐ f.deg
.HomogeneousLocalization.eq_num_div_den
: iff : HomogeneousLocalization ๐ x
, thenf.val : Aโ
is equal tof.num / f.den
.HomogeneousLocalization.localRing
:HomogeneousLocalization ๐ x
is a local ring whenx
is the complement of some prime ideals.HomogeneousLocalization.map
: LetA
andB
be two graded rings andg : A โ B
a grading preserving ring map. IfP โค A
andQ โค B
are submonoids such thatP โค gโปยน(Q)
, theng
induces a ring map between the homogeneous localization ofA
atP
and the homogeneous localization ofB
atQ
.
References #
- [Robin Hartshorne, Algebraic Geometry][Har77]
Let x
be a submonoid of A
, then NumDenSameDeg ๐ x
is a structure with a numerator and a
denominator with same grading such that the denominator is contained in x
.
- deg : ฮน
- num : โฅ(๐ self.deg)
- den : โฅ(๐ self.deg)
- den_mem : โself.den โ x
Instances For
Equations
- HomogeneousLocalization.NumDenSameDeg.instNeg x = { neg := fun (c : HomogeneousLocalization.NumDenSameDeg ๐ x) => { deg := c.deg, num := โจ-โc.num, โฏโฉ, den := c.den, den_mem := โฏ } }
Equations
- One or more equations did not get rendered due to their size.
Equations
- HomogeneousLocalization.NumDenSameDeg.instOne x = { one := { deg := 0, num := โจ1, โฏโฉ, den := โจ1, โฏโฉ, den_mem := โฏ } }
Equations
- HomogeneousLocalization.NumDenSameDeg.instZero x = { zero := { deg := 0, num := 0, den := โจ1, โฏโฉ, den_mem := โฏ } }
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Equations
Equations
- One or more equations did not get rendered due to their size.
For x : prime ideal of A
and any p : NumDenSameDeg ๐ x
, or equivalent a numerator and a
denominator of the same degree, we get an element p.num / p.den
of Aโ
.
Equations
- HomogeneousLocalization.NumDenSameDeg.embedding ๐ x p = Localization.mk โp.num โจโp.den, โฏโฉ
Instances For
For x : prime ideal of A
, HomogeneousLocalization ๐ x
is NumDenSameDeg ๐ x
modulo the
kernel of embedding ๐ x
. This is essentially the subring of Aโ
where the numerator and
denominator share the same grading.
Equations
Instances For
Construct an element of HomogeneousLocalization ๐ x
from a homogeneous fraction.
Equations
Instances For
View an element of HomogeneousLocalization ๐ x
as an element of Aโ
by forgetting that the
numerator and denominator are of the same grading.
Equations
- y.val = Quotient.liftOn' y (HomogeneousLocalization.NumDenSameDeg.embedding ๐ x) โฏ
Instances For
Equations
- HomogeneousLocalization.instSMul x = { smul := fun (m : ฮฑ) => Quotient.map' (fun (x_1 : HomogeneousLocalization.NumDenSameDeg ๐ x) => m โข x_1) โฏ }
Equations
- HomogeneousLocalization.instNeg x = { neg := Quotient.map' Neg.neg โฏ }
Equations
- HomogeneousLocalization.hasPow x = { pow := fun (z : HomogeneousLocalization ๐ x) (n : โ) => Quotient.map' (fun (x_1 : HomogeneousLocalization.NumDenSameDeg ๐ x) => x_1 ^ n) โฏ z }
Equations
- HomogeneousLocalization.instAdd x = { add := Quotient.mapโ' (fun (x1 x2 : HomogeneousLocalization.NumDenSameDeg ๐ x) => x1 + x2) โฏ }
Equations
- HomogeneousLocalization.instSub x = { sub := fun (z1 z2 : HomogeneousLocalization ๐ x) => z1 + -z2 }
Equations
- HomogeneousLocalization.instMul x = { mul := Quotient.mapโ' (fun (x1 x2 : HomogeneousLocalization.NumDenSameDeg ๐ x) => x1 * x2) โฏ }
Equations
- HomogeneousLocalization.instOne x = { one := Quotient.mk'' 1 }
Equations
- HomogeneousLocalization.instZero x = { zero := Quotient.mk'' 0 }
Equations
- HomogeneousLocalization.instNatCast = { natCast := Nat.unaryCast }
Equations
- HomogeneousLocalization.instIntCast = { intCast := Int.castDef }
Equations
- HomogeneousLocalization.homogenousLocalizationCommRing = Function.Injective.commRing HomogeneousLocalization.val โฏ โฏ โฏ โฏ โฏ โฏ โฏ โฏ โฏ โฏ โฏ โฏ
Equations
- HomogeneousLocalization.homogeneousLocalizationAlgebra = Algebra.mk { toFun := HomogeneousLocalization.val, map_one' := โฏ, map_mul' := โฏ, map_zero' := โฏ, map_add' := โฏ } โฏ โฏ
Numerator of an element in HomogeneousLocalization x
.
Equations
- f.num = โ(Quotient.out' f).num
Instances For
Denominator of an element in HomogeneousLocalization x
.
Equations
- f.den = โ(Quotient.out' f).den
Instances For
For an element in HomogeneousLocalization x
, degree is the natural number i
such that
๐ i
contains both numerator and denominator.
Equations
- f.deg = (Quotient.out' f).deg
Instances For
Localizing a ring homogeneously at a prime ideal.
Equations
- HomogeneousLocalization.AtPrime ๐ ๐ญ = HomogeneousLocalization ๐ ๐ญ.primeCompl
Instances For
Equations
- โฏ = โฏ
Equations
- โฏ = โฏ
Localizing away from powers of f
homogeneously.
Equations
- HomogeneousLocalization.Away ๐ f = HomogeneousLocalization ๐ (Submonoid.powers f)
Instances For
Let A, B
be two graded algebras with the same indexing set and g : A โ B
be a graded algebra
homomorphism (i.e. g(Aโ) โ Bโ
). Let P โค A
be a submonoid and Q โค B
be a submonoid such that
P โค gโปยน Q
, then g
induce a map from the homogeneous localizations Aโฐ_P
to the homogeneous
localizations Bโฐ_Q
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Let A
be a graded algebra and P โค Q
be two submonoids, then the homogeneous localization of A
at P
embeds into the homogeneous localization of A
at Q
.
Equations
- HomogeneousLocalization.mapId ๐ h = HomogeneousLocalization.map ๐ ๐ (RingHom.id A) h โฏ