Tensoring with a flat module is an exact functor #
In this file we prove that tensoring with a flat module is an exact functor.
Main results #
Module.Flat.iff_lTensor_preserves_shortComplex_exact
: anR
-moduleM
is flat if and only if for every exact sequenceA ⟶ B ⟶ C
,M ⊗ A ⟶ M ⊗ B ⟶ M ⊗ C
is also exact.Module.Flat.iff_rTensor_preserves_shortComplex_exact
: anR
-moduleM
is flat if and only if for every short exact sequenceA ⟶ B ⟶ C
,A ⊗ M ⟶ B ⊗ M ⟶ C ⊗ M
is also exact.
TODO #
- Prove that tensoring with a flat module is an exact functor in the sense that it preserves both finite limits and colimits.
- Relate flatness with
Tor
theorem
Module.Flat.lTensor_shortComplex_exact
{R : Type u}
[CommRing R]
(M : ModuleCat R)
[Module.Flat R ↑M]
(C : CategoryTheory.ShortComplex (ModuleCat R))
(hC : C.Exact)
:
(C.map (CategoryTheory.MonoidalCategory.tensorLeft M)).Exact
theorem
Module.Flat.rTensor_shortComplex_exact
{R : Type u}
[CommRing R]
(M : ModuleCat R)
[Module.Flat R ↑M]
(C : CategoryTheory.ShortComplex (ModuleCat R))
(hC : C.Exact)
:
(C.map (CategoryTheory.MonoidalCategory.tensorRight M)).Exact
theorem
Module.Flat.iff_lTensor_preserves_shortComplex_exact
{R : Type u}
[CommRing R]
(M : ModuleCat R)
:
Module.Flat R ↑M ↔ ∀ (C : CategoryTheory.ShortComplex (ModuleCat R)),
C.Exact → (C.map (CategoryTheory.MonoidalCategory.tensorLeft M)).Exact
theorem
Module.Flat.iff_rTensor_preserves_shortComplex_exact
{R : Type u}
[CommRing R]
(M : ModuleCat R)
:
Module.Flat R ↑M ↔ ∀ (C : CategoryTheory.ShortComplex (ModuleCat R)),
C.Exact → (C.map (CategoryTheory.MonoidalCategory.tensorRight M)).Exact