The differential module and etale algebras #
Main results #
KaehlerDifferential.tensorKaehlerEquivOfFormallyEtale
:
The canonical isomorphism T ⊗[S] Ω[S⁄R] ≃ₗ[T] Ω[T⁄R]
for T
a formally etale S
-algebra.
noncomputable def
KaehlerDifferential.tensorKaehlerEquivOfFormallyEtale
(R S T : Type u)
[CommRing R]
[CommRing S]
[CommRing T]
[Algebra R S]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
[Algebra.FormallyEtale S T]
:
The canonical isomorphism T ⊗[S] Ω[S⁄R] ≃ₗ[T] Ω[T⁄R]
for T
a formally etale S
-algebra.
Also see S ⊗[R] Ω[A⁄R] ≃ₗ[S] Ω[S ⊗[R] A⁄S]
at KaehlerDifferential.tensorKaehlerEquiv
.
Equations
Instances For
@[simp]
theorem
KaehlerDifferential.tensorKaehlerEquivOfFormallyEtale_apply
(R S T : Type u)
[CommRing R]
[CommRing S]
[CommRing T]
[Algebra R S]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
[Algebra.FormallyEtale S T]
(a✝ : TensorProduct S T (Ω[S⁄R]))
:
(KaehlerDifferential.tensorKaehlerEquivOfFormallyEtale R S T) a✝ = (KaehlerDifferential.mapBaseChange R S T) a✝
theorem
KaehlerDifferential.isBaseChange_of_formallyEtale
(R S T : Type u)
[CommRing R]
[CommRing S]
[CommRing T]
[Algebra R S]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
[Algebra.FormallyEtale S T]
:
IsBaseChange T (KaehlerDifferential.map R R S T)
instance
KaehlerDifferential.isLocalizedModule_map
(R S T : Type u)
[CommRing R]
[CommRing S]
[CommRing T]
[Algebra R S]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
(M : Submonoid S)
[IsLocalization M T]
:
IsLocalizedModule M (KaehlerDifferential.map R R S T)