Documentation

Mathlib.RingTheory.DualNumber

Algebraic properties of dual numbers #

Main results #

theorem DualNumber.fst_eq_zero_iff_eps_dvd {R : Type u_1} [Semiring R] {x : DualNumber R} :
TrivSqZeroExt.fst x = 0 DualNumber.eps x
theorem DualNumber.isNilpotent_eps {R : Type u_1} [Semiring R] :
IsNilpotent DualNumber.eps
Equations
  • =
theorem DualNumber.ideal_trichotomy {K : Type u_2} [DivisionRing K] (I : Ideal (DualNumber K)) :
I = I = Ideal.span {DualNumber.eps} I =
theorem DualNumber.isMaximal_span_singleton_eps {K : Type u_2} [DivisionRing K] :
(Ideal.span {DualNumber.eps}).IsMaximal
theorem DualNumber.exists_mul_left_or_mul_right {K : Type u_2} [DivisionRing K] (a : DualNumber K) (b : DualNumber K) :
∃ (c : DualNumber K), a * c = b b * c = a