Invariance of measures along a kernel #
We say that a measure μ
is invariant with respect to a kernel κ
if its push-forward along the
kernel μ.bind κ
is the same measure.
Main definitions #
ProbabilityTheory.Kernel.Invariant
: invariance of a given measure with respect to a kernel.
Useful lemmas #
ProbabilityTheory.Kernel.const_bind_eq_comp_const
, andProbabilityTheory.Kernel.comp_const_apply_eq_bind
established the relationship between the push-forward measure and the composition of kernels.
Push-forward of measures along a kernel #
@[simp]
theorem
ProbabilityTheory.Kernel.bind_add
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
(κ : ProbabilityTheory.Kernel α β)
:
@[simp]
theorem
ProbabilityTheory.Kernel.bind_smul
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
(κ : ProbabilityTheory.Kernel α β)
(μ : MeasureTheory.Measure α)
(r : ENNReal)
:
theorem
ProbabilityTheory.Kernel.const_bind_eq_comp_const
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
(κ : ProbabilityTheory.Kernel α β)
(μ : MeasureTheory.Measure α)
:
ProbabilityTheory.Kernel.const α (μ.bind ⇑κ) = κ.comp (ProbabilityTheory.Kernel.const α μ)
theorem
ProbabilityTheory.Kernel.comp_const_apply_eq_bind
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
(κ : ProbabilityTheory.Kernel α β)
(μ : MeasureTheory.Measure α)
(a : α)
:
(κ.comp (ProbabilityTheory.Kernel.const α μ)) a = μ.bind ⇑κ
Invariant measures of kernels #
def
ProbabilityTheory.Kernel.Invariant
{α : Type u_1}
{mα : MeasurableSpace α}
(κ : ProbabilityTheory.Kernel α α)
(μ : MeasureTheory.Measure α)
:
A measure μ
is invariant with respect to the kernel κ
if the push-forward measure of μ
along κ
equals μ
.
Instances For
theorem
ProbabilityTheory.Kernel.Invariant.def
{α : Type u_1}
{mα : MeasurableSpace α}
{κ : ProbabilityTheory.Kernel α α}
{μ : MeasureTheory.Measure α}
(hκ : κ.Invariant μ)
:
μ.bind ⇑κ = μ
theorem
ProbabilityTheory.Kernel.Invariant.comp_const
{α : Type u_1}
{mα : MeasurableSpace α}
{κ : ProbabilityTheory.Kernel α α}
{μ : MeasureTheory.Measure α}
(hκ : κ.Invariant μ)
:
κ.comp (ProbabilityTheory.Kernel.const α μ) = ProbabilityTheory.Kernel.const α μ
theorem
ProbabilityTheory.Kernel.Invariant.comp
{α : Type u_1}
{mα : MeasurableSpace α}
{κ : ProbabilityTheory.Kernel α α}
{η : ProbabilityTheory.Kernel α α}
{μ : MeasureTheory.Measure α}
[ProbabilityTheory.IsSFiniteKernel κ]
(hκ : κ.Invariant μ)
(hη : η.Invariant μ)
:
(κ.comp η).Invariant μ