Lebesgue and Bochner integrals of conditional kernels #
Integrals of ProbabilityTheory.Kernel.condKernel
and MeasureTheory.Measure.condKernel
.
Main statements #
ProbabilityTheory.setIntegral_condKernel
: the integral∫ b in s, ∫ ω in t, f (b, ω) ∂(Kernel.condKernel κ (a, b)) ∂(Kernel.fst κ a)
is equal to∫ x in s ×ˢ t, f x ∂(κ a)
.MeasureTheory.Measure.setIntegral_condKernel
:∫ b in s, ∫ ω in t, f (b, ω) ∂(ρ.condKernel b) ∂ρ.fst = ∫ x in s ×ˢ t, f x ∂ρ
Corresponding statements for the Lebesgue integral and/or without the sets s
and t
are also
provided.
Alias of ProbabilityTheory.setLIntegral_condKernel_eq_measure_prod
.
Alias of ProbabilityTheory.setLIntegral_condKernel_univ_right
.
Alias of ProbabilityTheory.setLIntegral_condKernel_univ_left
.
Alias of ProbabilityTheory.setIntegral_condKernel
.
Alias of ProbabilityTheory.setIntegral_condKernel_univ_right
.
Alias of ProbabilityTheory.setIntegral_condKernel_univ_left
.
Alias of MeasureTheory.Measure.setLIntegral_condKernel_eq_measure_prod
.
Alias of MeasureTheory.Measure.setLIntegral_condKernel_univ_right
.
Alias of MeasureTheory.Measure.setLIntegral_condKernel_univ_left
.
Alias of MeasureTheory.Measure.setIntegral_condKernel_univ_right
.
Alias of MeasureTheory.Measure.setIntegral_condKernel_univ_left
.
Integrability #
We place these lemmas in the MeasureTheory
namespace to enable dot notation.