Documentation

Mathlib.Probability.Independence.Integrable

Independence of functions implies that the measure is a probability measure #

If a nonzero function belongs to ℒ^p (in particular if it is integrable) and is independent of another function, then the space is a probability space.

theorem MeasureTheory.Memℒp.isProbabilityMeasure_of_indepFun {Ω : Type u_1} {E : Type u_2} {F : Type u_3} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] [MeasurableSpace F] (f : ΩE) (g : ΩF) {p : ENNReal} (hp : p 0) (hp' : p ) (hℒp : MeasureTheory.Memℒp f p μ) (h'f : ¬∀ᵐ (ω : Ω) ∂μ, f ω = 0) (hindep : ProbabilityTheory.IndepFun f g μ) :

If a nonzero function belongs to ℒ^p and is independent of another function, then the space is a probability space.

theorem MeasureTheory.Integrable.isProbabilityMeasure_of_indepFun {Ω : Type u_1} {E : Type u_2} {F : Type u_3} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [MeasurableSpace E] [BorelSpace E] [MeasurableSpace F] (f : ΩE) (g : ΩF) (hf : MeasureTheory.Integrable f μ) (h'f : ¬∀ᵐ (ω : Ω) ∂μ, f ω = 0) (hindep : ProbabilityTheory.IndepFun f g μ) :

If a nonzero function is integrable and is independent of another function, then the space is a probability space.