Pareto distributions over ℝ #
Define the Pareto measure over the reals.
Main definitions #
paretoPDFReal
: the functiont r x ↦ r * t ^ r * x ^ -(r + 1)
fort ≤ x
or0
else, which is the probability density function of a Pareto distribution with scalet
and shaper
(whenht : 0 < t
andhr : 0 < r
).paretoPDF
:ℝ≥0∞
-valued pdf,paretoPDF t r = ENNReal.ofReal (paretoPDFReal t r)
.paretoMeasure
: a Pareto measure onℝ
, parametrized by its scalet
and shaper
.paretoCDFReal
: the CDF given by the definition of CDF inProbabilityTheory.CDF
applied to the Pareto measure.
The pdf of the Pareto distribution, as a function valued in ℝ≥0∞
.
Equations
Instances For
theorem
ProbabilityTheory.paretoPDF_eq
(t : ℝ)
(r : ℝ)
(x : ℝ)
:
ProbabilityTheory.paretoPDF t r x = ENNReal.ofReal (if t ≤ x then r * t ^ r * x ^ (-(r + 1)) else 0)
theorem
ProbabilityTheory.paretoPDF_of_lt
{t : ℝ}
{r : ℝ}
{x : ℝ}
(hx : x < t)
:
ProbabilityTheory.paretoPDF t r x = 0
theorem
ProbabilityTheory.paretoPDF_of_le
{t : ℝ}
{r : ℝ}
{x : ℝ}
(hx : t ≤ x)
:
ProbabilityTheory.paretoPDF t r x = ENNReal.ofReal (r * t ^ r * x ^ (-(r + 1)))
theorem
ProbabilityTheory.lintegral_paretoPDF_of_le
{t : ℝ}
{r : ℝ}
{x : ℝ}
(hx : x ≤ t)
:
∫⁻ (y : ℝ) in Set.Iio x, ProbabilityTheory.paretoPDF t r y = 0
The Lebesgue integral of the Pareto pdf over reals ≤ t
equals 0
.
The Pareto pdf is measurable.
The Pareto pdf is strongly measurable.
theorem
ProbabilityTheory.paretoPDFReal_pos
{t : ℝ}
{r : ℝ}
{x : ℝ}
(ht : 0 < t)
(hr : 0 < r)
(hx : t ≤ x)
:
0 < ProbabilityTheory.paretoPDFReal t r x
The Pareto pdf is positive for all reals >= t
.
theorem
ProbabilityTheory.paretoPDFReal_nonneg
{t : ℝ}
{r : ℝ}
(ht : 0 ≤ t)
(hr : 0 ≤ r)
(x : ℝ)
:
0 ≤ ProbabilityTheory.paretoPDFReal t r x
The Pareto pdf is nonnegative.
@[simp]
theorem
ProbabilityTheory.lintegral_paretoPDF_eq_one
{t : ℝ}
{r : ℝ}
(ht : 0 < t)
(hr : 0 < r)
:
∫⁻ (x : ℝ), ProbabilityTheory.paretoPDF t r x = 1
The pdf of the Pareto distribution integrates to 1
.
Measure defined by the Pareto distribution.
Equations
- ProbabilityTheory.paretoMeasure t r = MeasureTheory.volume.withDensity (ProbabilityTheory.paretoPDF t r)
Instances For
theorem
ProbabilityTheory.isProbabilityMeasure_paretoMeasure
{t : ℝ}
{r : ℝ}
(ht : 0 < t)
(hr : 0 < r)
:
theorem
ProbabilityTheory.paretoCDFReal_eq_integral
{t : ℝ}
{r : ℝ}
(ht : 0 < t)
(hr : 0 < r)
(x : ℝ)
:
↑(ProbabilityTheory.cdf (ProbabilityTheory.paretoMeasure t r)) x = ∫ (x : ℝ) in Set.Iic x, ProbabilityTheory.paretoPDFReal t r x
CDF of the Pareto distribution equals the integral of the PDF.
theorem
ProbabilityTheory.paretoCDFReal_eq_lintegral
{t : ℝ}
{r : ℝ}
(ht : 0 < t)
(hr : 0 < r)
(x : ℝ)
:
↑(ProbabilityTheory.cdf (ProbabilityTheory.paretoMeasure t r)) x = (∫⁻ (x : ℝ) in Set.Iic x, ProbabilityTheory.paretoPDF t r x).toReal