Exponential distributions over ℝ #
Define the Exponential measure over the reals.
Main definitions #
exponentialPDFReal
: the functionr x ↦ r * exp (-(r * x)
for0 ≤ x
or0
else, which is the probability density function of a exponential distribution with rater
(whenhr : 0 < r
).exponentialPDF
:ℝ≥0∞
-valued pdf,exponentialPDF r = ENNReal.ofReal (exponentialPDFReal r)
.expMeasure
: an exponential measure onℝ
, parametrized by its rater
.exponentialCDFReal
: the CDF given by the definition of CDF inProbabilityTheory.CDF
applied to the exponential measure.
Main results #
exponentialCDFReal_eq
: Proof that theexponentialCDFReal
given by the definition equals the known function given asr x ↦ 1 - exp (- (r * x))
for0 ≤ x
or0
else.
The pdf of the exponential distribution depending on its rate
Equations
Instances For
The pdf of the exponential distribution, as a function valued in ℝ≥0∞
Equations
Instances For
theorem
ProbabilityTheory.exponentialPDF_eq
(r : ℝ)
(x : ℝ)
:
ProbabilityTheory.exponentialPDF r x = ENNReal.ofReal (if 0 ≤ x then r * Real.exp (-(r * x)) else 0)
theorem
ProbabilityTheory.exponentialPDF_of_nonneg
{r : ℝ}
{x : ℝ}
(hx : 0 ≤ x)
:
ProbabilityTheory.exponentialPDF r x = ENNReal.ofReal (r * Real.exp (-(r * x)))
theorem
ProbabilityTheory.lintegral_exponentialPDF_of_nonpos
{x : ℝ}
{r : ℝ}
(hx : x ≤ 0)
:
∫⁻ (y : ℝ) in Set.Iio x, ProbabilityTheory.exponentialPDF r y = 0
The Lebesgue integral of the exponential pdf over nonpositive reals equals 0
The exponential pdf is measurable.
The exponential pdf is positive for all positive reals
The exponential pdf is nonnegative
@[simp]
theorem
ProbabilityTheory.lintegral_exponentialPDF_eq_one
{r : ℝ}
(hr : 0 < r)
:
∫⁻ (x : ℝ), ProbabilityTheory.exponentialPDF r x = 1
The pdf of the exponential distribution integrates to 1
Measure defined by the exponential distribution
Equations
Instances For
CDF of the exponential distribution
Equations
Instances For
theorem
ProbabilityTheory.exponentialCDFReal_eq_integral
{r : ℝ}
(hr : 0 < r)
(x : ℝ)
:
↑(ProbabilityTheory.exponentialCDFReal r) x = ∫ (x : ℝ) in Set.Iic x, ProbabilityTheory.exponentialPDFReal r x
theorem
ProbabilityTheory.exponentialCDFReal_eq_lintegral
{r : ℝ}
(hr : 0 < r)
(x : ℝ)
:
↑(ProbabilityTheory.exponentialCDFReal r) x = (∫⁻ (x : ℝ) in Set.Iic x, ProbabilityTheory.exponentialPDF r x).toReal
theorem
ProbabilityTheory.lintegral_exponentialPDF_eq_antiDeriv
{r : ℝ}
(hr : 0 < r)
(x : ℝ)
:
∫⁻ (y : ℝ) in Set.Iic x, ProbabilityTheory.exponentialPDF r y = ENNReal.ofReal (if 0 ≤ x then 1 - Real.exp (-(r * x)) else 0)