UpperSet.Ici
etc as Sup
/sSup
/Inf
/sInf
-homomorphisms #
In this file we define UpperSet.iciSupHom
etc. These functions are UpperSet.Ici
and
LowerSet.Iic
bundled as SupHom
s, InfHom
s, sSupHom
s, or sInfHom
s.
UpperSet.Ici
as a SupHom
.
Equations
- UpperSet.iciSupHom = { toFun := UpperSet.Ici, map_sup' := ⋯ }
Instances For
@[simp]
@[simp]
theorem
UpperSet.iciSupHom_apply
{α : Type u_1}
[SemilatticeSup α]
(a : α)
:
UpperSet.iciSupHom a = UpperSet.Ici a
UpperSet.Ici
as a sSupHom
.
Equations
- UpperSet.icisSupHom = { toFun := UpperSet.Ici, map_sSup' := ⋯ }
Instances For
@[simp]
@[simp]
theorem
UpperSet.icisSupHom_apply
{α : Type u_1}
[CompleteLattice α]
(a : α)
:
UpperSet.icisSupHom a = UpperSet.Ici a
LowerSet.Iic
as an InfHom
.
Equations
- LowerSet.iicInfHom = { toFun := LowerSet.Iic, map_inf' := ⋯ }
Instances For
@[simp]
@[simp]
theorem
LowerSet.iicInfHom_apply
{α : Type u_1}
[SemilatticeInf α]
(a : α)
:
LowerSet.iicInfHom a = LowerSet.Iic a
LowerSet.Iic
as an sInfHom
.
Equations
- LowerSet.iicsInfHom = { toFun := LowerSet.Iic, map_sInf' := ⋯ }
Instances For
@[simp]
@[simp]
theorem
LowerSet.iicsInfHom_apply
{α : Type u_1}
[CompleteLattice α]
(a : α)
:
LowerSet.iicsInfHom a = LowerSet.Iic a