Documentation

Mathlib.Order.Restriction

Restriction of a function indexed by a preorder #

Given a preorder α and dependent function f : (i : α) → π i and a : α, one might want to consider the restriction of f to elements ≤ a. This is defined in this file as Preorder.restrictLe a f. Similarly, if we have a b : α, hab : a ≤ b and f : (i : ↑(Set.Iic b)) → π ↑i, one might want to restrict it to elements ≤ a. This is defined in this file as Preorder.restrictLe₂ hab f.

We also provide versions where the intervals are seen as finite sets, see Preorder.frestrictLe and Preorder.frestrictLe₂.

Main definitions #

def Preorder.restrictLe {α : Type u_1} [Preorder α] {π : αType u_2} (a : α) (f : (a : α) → π a) (a : (Set.Iic a✝)) :
π a

Restrict domain of a function f indexed by α to elements ≤ a.

Equations
Instances For
    @[simp]
    theorem Preorder.restrictLe_apply {α : Type u_1} [Preorder α] {π : αType u_2} (a : α) (f : (a : α) → π a) (i : (Set.Iic a)) :
    Preorder.restrictLe a f i = f i
    def Preorder.restrictLe₂ {α : Type u_1} [Preorder α] {π : αType u_2} {a : α} {b : α} (hab : a✝ b) (f : (a : (Set.Iic b)) → π a) (a : (Set.Iic a✝)) :
    π a

    If a function f indexed by α is restricted to elements ≤ π, and a ≤ b, this is the restriction to elements ≤ a.

    Equations
    Instances For
      @[simp]
      theorem Preorder.restrictLe₂_apply {α : Type u_1} [Preorder α] {π : αType u_2} {a : α} {b : α} (hab : a b) (f : (i : (Set.Iic b)) → π i) (i : (Set.Iic a)) :
      Preorder.restrictLe₂ hab f i = f i,
      theorem Preorder.restrictLe₂_comp_restrictLe {α : Type u_1} [Preorder α] {π : αType u_2} {a : α} {b : α} (hab : a b) :
      theorem Preorder.restrictLe₂_comp_restrictLe₂ {α : Type u_1} [Preorder α] {π : αType u_2} {a : α} {b : α} {c : α} (hab : a b) (hbc : b c) :
      def Preorder.frestrictLe {α : Type u_1} [Preorder α] {π : αType u_2} [LocallyFiniteOrderBot α] (a : α) (f : (i : α) → π i) (i : { x : α // x Finset.Iic a }) :
      π i

      Restrict domain of a function f indexed by α to elements ≤ α, seen as a finite set.

      Equations
      Instances For
        @[simp]
        theorem Preorder.frestrictLe_apply {α : Type u_1} [Preorder α] {π : αType u_2} [LocallyFiniteOrderBot α] (a : α) (f : (a : α) → π a) (i : { x : α // x Finset.Iic a }) :
        Preorder.frestrictLe a f i = f i
        def Preorder.frestrictLe₂ {α : Type u_1} [Preorder α] {π : αType u_2} [LocallyFiniteOrderBot α] {a : α} {b : α} (hab : a b) (f : (i : { x : α // x Finset.Iic b }) → π i) (i : { x : α // x Finset.Iic a }) :
        π i

        If a function f indexed by α is restricted to elements ≤ b, and a ≤ b, this is the restriction to elements ≤ b. Intervals are seen as finite sets.

        Equations
        Instances For
          @[simp]
          theorem Preorder.frestrictLe₂_apply {α : Type u_1} [Preorder α] {π : αType u_2} [LocallyFiniteOrderBot α] {a : α} {b : α} (hab : a b) (f : (i : { x : α // x Finset.Iic b }) → π i) (i : { x : α // x Finset.Iic a }) :
          Preorder.frestrictLe₂ hab f i = f i,
          theorem Preorder.frestrictLe₂_comp_frestrictLe₂ {α : Type u_1} [Preorder α] {π : αType u_2} [LocallyFiniteOrderBot α] {a : α} {b : α} {c : α} (hab : a b) (hbc : b c) :