Documentation

Mathlib.Order.Monotone.Extension

Extension of a monotone function from a set to the whole space #

In this file we prove that if a function is monotone and is bounded on a set s, then it admits a monotone extension to the whole space.

theorem MonotoneOn.exists_monotone_extension {α : Type u_1} {β : Type u_2} [LinearOrder α] [ConditionallyCompleteLinearOrder β] {f : αβ} {s : Set α} (h : MonotoneOn f s) (hl : BddBelow (f '' s)) (hu : BddAbove (f '' s)) :
∃ (g : αβ), Monotone g Set.EqOn f g s

If a function is monotone and is bounded on a set s, then it admits a monotone extension to the whole space.

theorem AntitoneOn.exists_antitone_extension {α : Type u_1} {β : Type u_2} [LinearOrder α] [ConditionallyCompleteLinearOrder β] {f : αβ} {s : Set α} (h : AntitoneOn f s) (hl : BddBelow (f '' s)) (hu : BddAbove (f '' s)) :
∃ (g : αβ), Antitone g Set.EqOn f g s

If a function is antitone and is bounded on a set s, then it admits an antitone extension to the whole space.