Ordered monoid instances on the space of germs of a function at a filter #
For each of the following structures we prove that if β
has this structure, then so does
Germ l β
:
Tags #
filter, germ
instance
Filter.Germ.instOrderedCommMonoid
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[OrderedCommMonoid β]
:
OrderedCommMonoid (l.Germ β)
Equations
- Filter.Germ.instOrderedCommMonoid = OrderedCommMonoid.mk ⋯
instance
Filter.Germ.instOrderedAddCommMonoid
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[OrderedAddCommMonoid β]
:
OrderedAddCommMonoid (l.Germ β)
Equations
- Filter.Germ.instOrderedAddCommMonoid = OrderedAddCommMonoid.mk ⋯
instance
Filter.Germ.instOrderedCancelCommMonoid
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[OrderedCancelCommMonoid β]
:
OrderedCancelCommMonoid (l.Germ β)
Equations
- Filter.Germ.instOrderedCancelCommMonoid = OrderedCancelCommMonoid.mk ⋯
instance
Filter.Germ.instOrderedAddCancelCommMonoid
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[OrderedCancelAddCommMonoid β]
:
OrderedCancelAddCommMonoid (l.Germ β)
Equations
- Filter.Germ.instOrderedAddCancelCommMonoid = OrderedCancelAddCommMonoid.mk ⋯
instance
Filter.Germ.instCanonicallyOrderedCommMonoid
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[CanonicallyOrderedCommMonoid β]
:
CanonicallyOrderedCommMonoid (l.Germ β)
Equations
- Filter.Germ.instCanonicallyOrderedCommMonoid = CanonicallyOrderedCommMonoid.mk ⋯ ⋯
instance
Filter.Germ.instCanonicallyOrderedAddCommMonoid
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[CanonicallyOrderedAddCommMonoid β]
:
CanonicallyOrderedAddCommMonoid (l.Germ β)
Equations
- Filter.Germ.instCanonicallyOrderedAddCommMonoid = CanonicallyOrderedAddCommMonoid.mk ⋯ ⋯