Equations
- One or more equations did not get rendered due to their size.
Equations
- Preord.instCoeSortType = CategoryTheory.Bundled.coeSort
Equations
- Preord.instInhabited = { default := Preord.of PUnit.{?u.3 + 1} }
Constructs an equivalence between preorders from an order isomorphism between them.
Equations
- Preord.Iso.mk e = { hom := ↑e, inv := ↑e.symm, hom_inv_id := ⋯, inv_hom_id := ⋯ }
Instances For
@[simp]
@[simp]
OrderDual
as a functor.
Equations
- Preord.dual = { obj := fun (X : Preord) => Preord.of (↑X)ᵒᵈ, map := fun {X Y : Preord} => ⇑OrderHom.dual, map_id := Preord.dual.proof_1, map_comp := @Preord.dual.proof_2 }
Instances For
@[simp]
The embedding of Preord
into Cat
.
Equations
- preordToCat = { obj := fun (X : Preord) => CategoryTheory.Cat.of ↑X, map := fun {X Y : Preord} (f : X ⟶ Y) => ⋯.functor, map_id := preordToCat.proof_2, map_comp := @preordToCat.proof_3 }