Documentation

Mathlib.Order.Category.NonemptyFinLinOrd

Nonempty finite linear orders #

This defines NonemptyFinLinOrd, the category of nonempty finite linear orders with monotone maps. This is the index category for simplicial objects.

Note: NonemptyFinLinOrd is not a subcategory of FinBddDistLat because its morphisms do not preserve and .

class NonemptyFiniteLinearOrder (α : Type u_1) extends Fintype α, LinearOrder α :
Type u_1

A typeclass for nonempty finite linear orders.

Instances
    def NonemptyFinLinOrd :
    Type (u_1 + 1)

    The category of nonempty finite linear orders.

    Equations
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Equations
      • One or more equations did not get rendered due to their size.

      Construct a bundled NonemptyFinLinOrd from the underlying type and typeclass.

      Equations
      Instances For
        Equations
        • α.instNonemptyFiniteLinearOrderα = α.str
        Equations
        • One or more equations did not get rendered due to their size.
        Equations
        • One or more equations did not get rendered due to their size.
        def NonemptyFinLinOrd.Iso.mk {α β : NonemptyFinLinOrd} (e : α ≃o β) :
        α β

        Constructs an equivalence between nonempty finite linear orders from an order isomorphism between them.

        Equations
        Instances For
          @[simp]
          theorem NonemptyFinLinOrd.Iso.mk_inv {α β : NonemptyFinLinOrd} (e : α ≃o β) :
          (NonemptyFinLinOrd.Iso.mk e).inv = e.symm
          @[simp]
          theorem NonemptyFinLinOrd.Iso.mk_hom {α β : NonemptyFinLinOrd} (e : α ≃o β) :

          OrderDual as a functor.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem NonemptyFinLinOrd.dual_map {X✝ Y✝ : NonemptyFinLinOrd} (a : X✝ →o Y✝) :
            NonemptyFinLinOrd.dual.map a = OrderHom.dual a

            The equivalence between NonemptyFinLinOrd and itself induced by OrderDual both ways.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              Equations

              The forgetful functor NonemptyFinLinOrdFinPartOrd and OrderDual commute.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def Fin.hom_succ {n : } (i : Fin n) :
                i.castSucc i.succ

                The generating arrow i ⟶ i+1 in the category Fin n.

                Equations
                Instances For