Atoms, Coatoms, Simple Lattices, and Finiteness #
This module contains some results on atoms and simple lattices in the finite context.
Main results #
Finite.to_isAtomic
,Finite.to_isCoatomic
: Finite partial orders with bottom resp. top are atomic resp. coatomic.
@[instance 200]
instance
IsSimpleOrder.instFintypeOfDecidableEq
{α : Type u_1}
[LE α]
[BoundedOrder α]
[IsSimpleOrder α]
[DecidableEq α]
:
Fintype α
Equations
- IsSimpleOrder.instFintypeOfDecidableEq = Fintype.ofEquiv Bool IsSimpleOrder.equivBool.symm
@[instance 200]
instance
IsSimpleOrder.instFinite
{α : Type u_1}
[LE α]
[BoundedOrder α]
[IsSimpleOrder α]
:
Finite α
Equations
- ⋯ = ⋯
theorem
Fintype.IsSimpleOrder.univ
{α : Type u_1}
[LE α]
[BoundedOrder α]
[IsSimpleOrder α]
[DecidableEq α]
:
theorem
Fintype.IsSimpleOrder.card
{α : Type u_1}
[LE α]
[BoundedOrder α]
[IsSimpleOrder α]
[DecidableEq α]
:
Fintype.card α = 2
@[instance 100]
Equations
- ⋯ = ⋯
@[instance 100]
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
theorem
exists_covby_infinite_Ici_of_infinite_Ici
{α : Type u_1}
[PartialOrder α]
{a : α}
[IsStronglyAtomic α]
(ha : (Set.Ici a).Infinite)
(hfin : {x : α | a ⋖ x}.Finite)
:
theorem
exists_covby_infinite_Iic_of_infinite_Iic
{α : Type u_1}
[PartialOrder α]
{a : α}
[IsStronglyCoatomic α]
(ha : (Set.Iic a).Infinite)
(hfin : {x : α | x ⋖ a}.Finite)
: