Critical values of the Riemann zeta function #
In this file we prove formulae for the critical values of ζ(s)
, and more generally of Hurwitz
zeta functions, in terms of Bernoulli polynomials.
Main results: #
hasSum_zeta_nat
: the final formula for zeta values, $$\zeta(2k) = \frac{(-1)^{(k + 1)} 2 ^ {2k - 1} \pi^{2k} B_{2 k}}{(2 k)!}.$$hasSum_zeta_two
andhasSum_zeta_four
: special cases given explicitly.hasSum_one_div_nat_pow_mul_cos
: a formula for the sum∑ (n : ℕ), cos (2 π i n x) / n ^ k
as an explicit multiple ofBₖ(x)
, for anyx ∈ [0, 1]
andk ≥ 2
even.hasSum_one_div_nat_pow_mul_sin
: a formula for the sum∑ (n : ℕ), sin (2 π i n x) / n ^ k
as an explicit multiple ofBₖ(x)
, for anyx ∈ [0, 1]
andk ≥ 3
odd.
Simple properties of the Bernoulli polynomial, as a function ℝ → ℝ
.
The function x ↦ Bₖ(x) : ℝ → ℝ
.
Equations
- bernoulliFun k x = Polynomial.eval x (Polynomial.map (algebraMap ℚ ℝ) (Polynomial.bernoulli k))
Instances For
Compute the Fourier coefficients of the Bernoulli functions via integration by parts.
The n
-th Fourier coefficient of the k
-th Bernoulli function on the interval [0, 1]
.
Equations
- bernoulliFourierCoeff k n = fourierCoeffOn bernoulliFourierCoeff.proof_1 (fun (x : ℝ) => ↑(bernoulliFun k x)) n
Instances For
The Fourier coefficients of B₀(x) = 1
.
The 0
-th Fourier coefficient of Bₖ(x)
.
In this section we use the above evaluations of the Fourier coefficients of Bernoulli
polynomials, together with the theorem has_pointwise_sum_fourier_series_of_summable
from Fourier
theory, to obtain an explicit formula for ∑ (n:ℤ), 1 / n ^ k * fourier n x
.
The Bernoulli polynomial, extended from [0, 1)
to the unit circle.
Equations
- periodizedBernoulli k = AddCircle.liftIco 1 0 (bernoulliFun k)