Documentation

Mathlib.NumberTheory.Ostrowski

Ostrowski’s Theorem #

Ostrowski's Theorem for the field : every absolute value on is equivalent to either a p-adic absolute value or to the standard Archimedean (Euclidean) absolute value.

Main results #

TODO #

Extend to arbitrary number fields.

References #

Tags #

ring norm, ostrowski

theorem Rat.MulRingNorm.eq_on_nat_iff_eq_on_Int {f : MulRingNorm } {g : MulRingNorm } :
(∀ (n : ), f n = g n) ∀ (n : ), f n = g n

Values of a multiplicative norm of the rationals coincide on ℕ if and only if they coincide on .

theorem Rat.MulRingNorm.eq_on_nat_iff_eq {f : MulRingNorm } {g : MulRingNorm } :
(∀ (n : ), f n = g n) f = g

Values of a multiplicative norm of the rationals are determined by the values on the natural numbers.

theorem Rat.MulRingNorm.equiv_on_nat_iff_equiv {f : MulRingNorm } {g : MulRingNorm } :
(∃ (c : ), 0 < c ∀ (n : ), f n ^ c = g n) f.equiv g

The equivalence class of a multiplicative norm on the rationals is determined by its values on the natural numbers.

Non-archimedean case #

Every bounded absolute value is equivalent to a p-adic absolute value

The mulRingNorm corresponding to the p-adic norm on .

Equations
Instances For
    theorem Rat.MulRingNorm.exists_minimal_nat_zero_lt_mulRingNorm_lt_one {f : MulRingNorm } (hf_nontriv : f 1) (bdd : ∀ (n : ), f n 1) :
    ∃ (p : ), (0 < f p f p < 1) ∀ (m : ), 0 < f m f m < 1p m

    There exists a minimal positive integer with absolute value smaller than 1.

    theorem Rat.MulRingNorm.is_prime_of_minimal_nat_zero_lt_mulRingNorm_lt_one {f : MulRingNorm } {p : } (hp0 : 0 < f p) (hp1 : f p < 1) (hmin : ∀ (m : ), 0 < f m f m < 1p m) :

    The minimal positive integer with absolute value smaller than 1 is a prime number.

    theorem Rat.MulRingNorm.mulRingNorm_eq_one_of_not_dvd {f : MulRingNorm } (bdd : ∀ (n : ), f n 1) {p : } (hp0 : 0 < f p) (hp1 : f p < 1) (hmin : ∀ (m : ), 0 < f m f m < 1p m) {m : } (hpm : ¬p m) :
    f m = 1

    A natural number not divible by p has absolute value 1.

    theorem Rat.MulRingNorm.exists_pos_mulRingNorm_eq_pow_neg {f : MulRingNorm } {p : } (hp0 : 0 < f p) (hp1 : f p < 1) (hmin : ∀ (m : ), 0 < f m f m < 1p m) :
    ∃ (t : ), 0 < t f p = p ^ (-t)

    The absolute value of p is p ^ (-t) for some positive real number t.

    theorem Rat.MulRingNorm.mulRingNorm_equiv_padic_of_bounded {f : MulRingNorm } (hf_nontriv : f 1) (bdd : ∀ (n : ), f n 1) :
    ∃! p : , ∃ (x : Fact (Nat.Prime p)), f.equiv (Rat.MulRingNorm.mulRingNorm_padic p)

    If f is bounded and not trivial, then it is equivalent to a p-adic absolute value.

    Archimedean case #

    Every unbounded absolute value is equivalent to the standard absolute value

    The usual absolute value on ℚ.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem Rat.MulRingNorm.mul_ring_norm_eq_abs (r : ) :
      Rat.MulRingNorm.mulRingNorm_real r = |r|
      theorem Rat.MulRingNorm.mulRingNorm_apply_le_sum_digits {f : MulRingNorm } (n : ) {m : } (hm : 1 < m) :
      f n (List.mapIdx (fun (i x : ) => m * f m ^ i) (m.digits n)).sum

      Given an two integers n, m with m > 1 the mulRingNorm of n is bounded by m + m * f m + m * (f m) ^ 2 + ... + m * (f m) ^ d where d is the number of digits of the expansion of n in base m.

      theorem Rat.MulRingNorm.one_lt_of_not_bounded {f : MulRingNorm } (notbdd : ¬∀ (n : ), f n 1) {n₀ : } (hn₀ : 1 < n₀) :
      1 < f n₀

      If f n > 1 for some n then f n > 1 for all n ≥ 2

      theorem Rat.MulRingNorm.mulRingNorm_le_mulRingNorm_pow_log {f : MulRingNorm } {m : } {n : } (hm : 1 < m) (hn : 1 < n) (notbdd : ¬∀ (n : ), f n 1) :
      f n f m ^ Real.logb m n

      Given two natural numbers n, m greater than 1 we have f n ≤ f m ^ logb m n.

      theorem Rat.MulRingNorm.le_of_mulRingNorm_eq {f : MulRingNorm } {m : } {n : } (hm : 1 < m) (hn : 1 < n) (notbdd : ¬∀ (n : ), f n 1) {s : } {t : } (hfm : f m = m ^ s) (hfn : f n = n ^ t) :
      t s

      Given m,n ≥ 2 and f m = m ^ s, f n = n ^ t for s, t > 0, we have t ≤ s.

      If f is not bounded and not trivial, then it is equivalent to the standard absolute value on .

      Ostrowski's Theorem