Documentation

Mathlib.NumberTheory.NumberField.Units.Regulator

Regulator of a number field #

We define and prove basic results about the regulator of a number field K.

Main definitions and results #

Tags #

number field, units, regulator

theorem NumberField.Units.abs_det_eq_abs_det (K : Type u_1) [Field K] [NumberField K] (u : Fin (NumberField.Units.rank K)(NumberField.RingOfIntegers K)ˣ) {w₁ w₂ : NumberField.InfinitePlace K} (e₁ : { w : NumberField.InfinitePlace K // w w₁ } Fin (NumberField.Units.rank K)) (e₂ : { w : NumberField.InfinitePlace K // w w₂ } Fin (NumberField.Units.rank K)) :
|(Matrix.of fun (i w : { w : NumberField.InfinitePlace K // w w₁ }) => (↑w).mult * Real.log (w ((algebraMap (NumberField.RingOfIntegers K) K) (u (e₁ i))))).det| = |(Matrix.of fun (i w : { w : NumberField.InfinitePlace K // w w₂ }) => (↑w).mult * Real.log (w ((algebraMap (NumberField.RingOfIntegers K) K) (u (e₂ i))))).det|

Let u : Fin (rank K) → (𝓞 K)ˣ be a family of units and let w₁ and w₂ be two infinite places. Then, the two square matrices with entries (mult w * log w (u i))_i, {w ≠ w_i}, i = 1,2, have the same determinant in absolute value.

theorem NumberField.Units.regulator_eq_det (K : Type u_1) [Field K] [NumberField K] (w' : NumberField.InfinitePlace K) (e : { w : NumberField.InfinitePlace K // w w' } Fin (NumberField.Units.rank K)) :
NumberField.Units.regulator K = |(Matrix.of fun (i w : { w : NumberField.InfinitePlace K // w w' }) => (↑w).mult * Real.log (w ((algebraMap (NumberField.RingOfIntegers K) K) (NumberField.Units.fundSystem K (e i))))).det|

For any infinite place w', the regulator is equal to the absolute value of the determinant of the matrix (mult w * log w (fundSystem K i)))_i, {w ≠ w'}.