Documentation

Mathlib.NumberTheory.NumberField.ProductFormula

The Product Formula for number fields #

In this file we prove the Product Formula for number fields: for any non-zero element x of a number field K, we have ∏ |x|ᵥ=1 where the product runs over the equivalence classes of absolute values of K. The |⬝|ᵥ are normalized as follows:

Main Results #

Tags #

number field, embeddings, places, infinite places, finite places, product formula

theorem NumberField.FinitePlace.prod_eq_inv_abs_norm_int {K : Type u_1} [Field K] [NumberField K] {x : NumberField.RingOfIntegers K} (h_x_nezero : x 0) :
∏ᶠ (w : NumberField.FinitePlace K), w x = |((Algebra.norm ) x)|⁻¹

For any non-zero x in 𝓞 K, the prduct of w x, where w runs over FinitePlace K, is equal to the inverse of the absolute value of Algebra.norm ℤ x.

theorem NumberField.FinitePlace.prod_eq_inv_abs_norm {K : Type u_1} [Field K] [NumberField K] {x : K} (h_x_nezero : x 0) :
∏ᶠ (w : NumberField.FinitePlace K), w x = |(Algebra.norm ) x|⁻¹

For any non-zero x in K, the prduct of w x, where w runs over FinitePlace K, is equal to the inverse of the absolute value of Algebra.norm ℚ x.

theorem NumberField.prod_abs_eq_one {K : Type u_1} [Field K] [NumberField K] {x : K} (h_x_nezero : x 0) :
(∏ w : NumberField.InfinitePlace K, w x ^ w.mult) * ∏ᶠ (w : NumberField.FinitePlace K), w x = 1

The Product Formula for the Number Field K.