Linearity of the L-series of f
as a function of f
#
We show that the LSeries
of f : ℕ → ℂ
is a linear function of f
(assuming convergence
of both L-series when adding two functions).
Addition #
theorem
LSeries.term_add
(f : ℕ → ℂ)
(g : ℕ → ℂ)
(s : ℂ)
:
LSeries.term (f + g) s = LSeries.term f s + LSeries.term g s
theorem
LSeries.term_add_apply
(f : ℕ → ℂ)
(g : ℕ → ℂ)
(s : ℂ)
(n : ℕ)
:
LSeries.term (f + g) s n = LSeries.term f s n + LSeries.term g s n
theorem
LSeriesHasSum.add
{f : ℕ → ℂ}
{g : ℕ → ℂ}
{s : ℂ}
{a : ℂ}
{b : ℂ}
(hf : LSeriesHasSum f s a)
(hg : LSeriesHasSum g s b)
:
LSeriesHasSum (f + g) s (a + b)
theorem
LSeriesSummable.add
{f : ℕ → ℂ}
{g : ℕ → ℂ}
{s : ℂ}
(hf : LSeriesSummable f s)
(hg : LSeriesSummable g s)
:
LSeriesSummable (f + g) s
@[simp]
theorem
LSeries_add
{f : ℕ → ℂ}
{g : ℕ → ℂ}
{s : ℂ}
(hf : LSeriesSummable f s)
(hg : LSeriesSummable g s)
:
Negation #
theorem
LSeries.term_neg_apply
(f : ℕ → ℂ)
(s : ℂ)
(n : ℕ)
:
LSeries.term (-f) s n = -LSeries.term f s n
theorem
LSeriesHasSum.neg
{f : ℕ → ℂ}
{s : ℂ}
{a : ℂ}
(hf : LSeriesHasSum f s a)
:
LSeriesHasSum (-f) s (-a)
@[simp]
Subtraction #
theorem
LSeries.term_sub
(f : ℕ → ℂ)
(g : ℕ → ℂ)
(s : ℂ)
:
LSeries.term (f - g) s = LSeries.term f s - LSeries.term g s
theorem
LSeries.term_sub_apply
(f : ℕ → ℂ)
(g : ℕ → ℂ)
(s : ℂ)
(n : ℕ)
:
LSeries.term (f - g) s n = LSeries.term f s n - LSeries.term g s n
theorem
LSeriesHasSum.sub
{f : ℕ → ℂ}
{g : ℕ → ℂ}
{s : ℂ}
{a : ℂ}
{b : ℂ}
(hf : LSeriesHasSum f s a)
(hg : LSeriesHasSum g s b)
:
LSeriesHasSum (f - g) s (a - b)
theorem
LSeriesSummable.sub
{f : ℕ → ℂ}
{g : ℕ → ℂ}
{s : ℂ}
(hf : LSeriesSummable f s)
(hg : LSeriesSummable g s)
:
LSeriesSummable (f - g) s
@[simp]
theorem
LSeries_sub
{f : ℕ → ℂ}
{g : ℕ → ℂ}
{s : ℂ}
(hf : LSeriesSummable f s)
(hg : LSeriesSummable g s)
:
Scalar multiplication #
theorem
LSeries.term_smul
(f : ℕ → ℂ)
(c : ℂ)
(s : ℂ)
:
LSeries.term (c • f) s = c • LSeries.term f s
theorem
LSeries.term_smul_apply
(f : ℕ → ℂ)
(c : ℂ)
(s : ℂ)
(n : ℕ)
:
LSeries.term (c • f) s n = c * LSeries.term f s n
theorem
LSeriesHasSum.smul
{f : ℕ → ℂ}
(c : ℂ)
{s : ℂ}
{a : ℂ}
(hf : LSeriesHasSum f s a)
:
LSeriesHasSum (c • f) s (c * a)
theorem
LSeriesSummable.smul
{f : ℕ → ℂ}
(c : ℂ)
{s : ℂ}
(hf : LSeriesSummable f s)
:
LSeriesSummable (c • f) s
theorem
LSeriesSummable.of_smul
{f : ℕ → ℂ}
{c : ℂ}
{s : ℂ}
(hc : c ≠ 0)
(hf : LSeriesSummable (c • f) s)
:
LSeriesSummable f s
theorem
LSeriesSummable.smul_iff
{f : ℕ → ℂ}
{c : ℂ}
{s : ℂ}
(hc : c ≠ 0)
:
LSeriesSummable (c • f) s ↔ LSeriesSummable f s