Documentation

Mathlib.NumberTheory.Harmonic.Int

The nth Harmonic number is not an integer. We formalize the proof using 2-adic valuations. This proof is due to Kürschák.

Reference: https://kconrad.math.uconn.edu/blurbs/gradnumthy/padicharmonicsum.pdf

The 2-adic valuation of the n-th harmonic number is the negative of the logarithm of n.

theorem padicNorm_two_harmonic {n : } (hn : n 0) :
(harmonic n) = 2 ^ Nat.log 2 n

The 2-adic norm of the n-th harmonic number is 2 raised to the logarithm of n in base 2.

theorem harmonic_not_int {n : } (h : 2 n) :
¬(harmonic n).isInt = true

The n-th harmonic number is not an integer for n ≥ 2.