Cyclotomic fields whose ring of integers is a PID. #
We prove that ℤ [ζₚ]
is a PID for specific values of p
. The result holds for p ≤ 19
,
but the proof is more and more involved.
Main results #
three_pid
: IfIsCyclotomicExtension {3} ℚ K
then𝓞 K
is a principal ideal domain.five_pid
: IfIsCyclotomicExtension {5} ℚ K
then𝓞 K
is a principal ideal domain.
theorem
IsCyclotomicExtension.Rat.three_pid
(K : Type u)
[Field K]
[NumberField K]
[IsCyclotomicExtension {3} ℚ K]
:
If IsCyclotomicExtension {3} ℚ K
then 𝓞 K
is a principal ideal domain.
theorem
IsCyclotomicExtension.Rat.five_pid
(K : Type u)
[Field K]
[NumberField K]
[IsCyclotomicExtension {5} ℚ K]
:
If IsCyclotomicExtension {5} ℚ K
then 𝓞 K
is a principal ideal domain.