Type Spaces #
This file defines the space of complete types over a first-order theory. (Note that types in model theory are different from types in type theory.)
Main Definitions #
FirstOrder.Language.Theory.CompleteType
:T.CompleteType α
consists of complete types over the theoryT
with variablesα
.FirstOrder.Language.Theory.typeOf
is the type of a given tuple.FirstOrder.Language.Theory.realizedTypes
:T.realizedTypes M α
is the set of types inT.CompleteType α
that are realized inM
- that is, the type of some tuple inM
.
Main Results #
FirstOrder.Language.Theory.CompleteType.nonempty_iff
: The spaceT.CompleteType α
is nonempty exactly whenT
is satisfiable.FirstOrder.Language.Theory.CompleteType.exists_modelType_is_realized_in
: Every type is realized in some model.
Implementation Notes #
- Complete types are implemented as maximal consistent theories in an expanded language. More frequently they are described as maximal consistent sets of formulas, but this is equivalent.
TODO #
- Connect
T.CompleteType α
to sets of formulasL.Formula α
.
structure
FirstOrder.Language.Theory.CompleteType
{L : FirstOrder.Language}
(T : L.Theory)
(α : Type w)
:
Type (max (max u v) w)
A complete type over a given theory in a certain type of variables is a maximally consistent (with the theory) set of formulas in that type.
- toTheory : (L.withConstants α).Theory
- subset' : (L.lhomWithConstants α).onTheory T ⊆ ↑self
- isMaximal' : (↑self).IsMaximal
Instances For
instance
FirstOrder.Language.Theory.CompleteType.Sentence.instSetLike
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
:
SetLike (T.CompleteType α) (L.withConstants α).Sentence
Equations
- FirstOrder.Language.Theory.CompleteType.Sentence.instSetLike = { coe := fun (p : T.CompleteType α) => ↑p, coe_injective' := ⋯ }
theorem
FirstOrder.Language.Theory.CompleteType.isMaximal
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
(p : T.CompleteType α)
:
theorem
FirstOrder.Language.Theory.CompleteType.subset
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
(p : T.CompleteType α)
:
(L.lhomWithConstants α).onTheory T ⊆ ↑p
theorem
FirstOrder.Language.Theory.CompleteType.mem_or_not_mem
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
(p : T.CompleteType α)
(φ : (L.withConstants α).Sentence)
:
φ ∈ p ∨ FirstOrder.Language.Formula.not φ ∈ p
theorem
FirstOrder.Language.Theory.CompleteType.mem_of_models
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
(p : T.CompleteType α)
{φ : (L.withConstants α).Sentence}
(h : (L.lhomWithConstants α).onTheory T ⊨ᵇ φ)
:
φ ∈ p
theorem
FirstOrder.Language.Theory.CompleteType.not_mem_iff
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
(p : T.CompleteType α)
(φ : (L.withConstants α).Sentence)
:
FirstOrder.Language.Formula.not φ ∈ p ↔ φ ∉ p
@[simp]
theorem
FirstOrder.Language.Theory.CompleteType.compl_setOf_mem
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{φ : (L.withConstants α).Sentence}
:
{p : T.CompleteType α | φ ∈ p}ᶜ = {p : T.CompleteType α | FirstOrder.Language.Formula.not φ ∈ p}
theorem
FirstOrder.Language.Theory.CompleteType.setOf_subset_eq_empty_iff
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
(S : (L.withConstants α).Theory)
:
theorem
FirstOrder.Language.Theory.CompleteType.setOf_mem_eq_univ_iff
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
(φ : (L.withConstants α).Sentence)
:
theorem
FirstOrder.Language.Theory.CompleteType.setOf_subset_eq_univ_iff
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
(S : (L.withConstants α).Theory)
:
theorem
FirstOrder.Language.Theory.CompleteType.nonempty_iff
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
:
instance
FirstOrder.Language.Theory.CompleteType.instNonempty
{L : FirstOrder.Language}
{α : Type w}
:
theorem
FirstOrder.Language.Theory.CompleteType.iInter_setOf_subset
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{ι : Type u_1}
(S : ι → (L.withConstants α).Theory)
:
theorem
FirstOrder.Language.Theory.CompleteType.toList_foldr_inf_mem
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{p : T.CompleteType α}
{t : Finset (L.withConstants α).Sentence}
:
def
FirstOrder.Language.Theory.typeOf
{L : FirstOrder.Language}
(T : L.Theory)
{α : Type w}
{M : Type w'}
[L.Structure M]
[Nonempty M]
[M ⊨ T]
(v : α → M)
:
T.CompleteType α
The set of all formulas true at a tuple in a structure forms a complete type.
Equations
- T.typeOf v = { toTheory := (L.withConstants α).completeTheory M, subset' := ⋯, isMaximal' := ⋯ }
Instances For
@[simp]
theorem
FirstOrder.Language.Theory.CompleteType.mem_typeOf
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{M : Type w'}
[L.Structure M]
[Nonempty M]
[M ⊨ T]
{v : α → M}
{φ : (L.withConstants α).Sentence}
:
φ ∈ T.typeOf v ↔ (FirstOrder.Language.Formula.equivSentence.symm φ).Realize v
theorem
FirstOrder.Language.Theory.CompleteType.formula_mem_typeOf
{L : FirstOrder.Language}
{T : L.Theory}
{α : Type w}
{M : Type w'}
[L.Structure M]
[Nonempty M]
[M ⊨ T]
{v : α → M}
{φ : L.Formula α}
:
def
FirstOrder.Language.Theory.realizedTypes
{L : FirstOrder.Language}
(T : L.Theory)
(M : Type w')
[L.Structure M]
[Nonempty M]
[M ⊨ T]
(α : Type w)
:
Set (T.CompleteType α)
A complete type p
is realized in a particular structure when there is some
tuple v
whose type is p
.
Instances For
theorem
FirstOrder.Language.Theory.exists_modelType_is_realized_in
{L : FirstOrder.Language}
(T : L.Theory)
{α : Type w}
(p : T.CompleteType α)
:
∃ (M : T.ModelType), p ∈ T.realizedTypes (↑M) α