Quotients of First-Order Structures #
This file defines prestructures and quotients of first-order structures.
Main Definitions #
- If
s
is a setoid (equivalence relation) onM
, aFirstOrder.Language.Prestructure s
is the data for a first-order structure onM
that will still be a structure when modded out bys
. - The structure
FirstOrder.Language.quotientStructure s
is the resulting structure onQuotient s
.
class
FirstOrder.Language.Prestructure
(L : FirstOrder.Language)
{M : Type u_1}
(s : Setoid M)
:
Type (max (max u_1 u_2) u_3)
A prestructure is a first-order structure with a Setoid
equivalence relation on it,
such that quotienting by that equivalence relation is still a structure.
- toStructure : L.Structure M
- fun_equiv : ∀ {n : ℕ} {f : L.Functions n} (x y : Fin n → M), x ≈ y → FirstOrder.Language.Structure.funMap f x ≈ FirstOrder.Language.Structure.funMap f y
- rel_equiv : ∀ {n : ℕ} {r : L.Relations n} (x y : Fin n → M), x ≈ y → FirstOrder.Language.Structure.RelMap r x = FirstOrder.Language.Structure.RelMap r y
Instances
theorem
FirstOrder.Language.Prestructure.fun_equiv
{L : FirstOrder.Language}
{M : Type u_1}
{s : Setoid M}
[self : L.Prestructure s]
{n : ℕ}
{f : L.Functions n}
(x : Fin n → M)
(y : Fin n → M)
:
theorem
FirstOrder.Language.Prestructure.rel_equiv
{L : FirstOrder.Language}
{M : Type u_1}
{s : Setoid M}
[self : L.Prestructure s]
{n : ℕ}
{r : L.Relations n}
(x : Fin n → M)
(y : Fin n → M)
:
instance
FirstOrder.Language.quotientStructure
{L : FirstOrder.Language}
{M : Type u_1}
{s : Setoid M}
[ps : L.Prestructure s]
:
L.Structure (Quotient s)
Equations
- One or more equations did not get rendered due to their size.
theorem
FirstOrder.Language.funMap_quotient_mk'
{L : FirstOrder.Language}
{M : Type u_1}
(s : Setoid M)
[ps : L.Prestructure s]
{n : ℕ}
(f : L.Functions n)
(x : Fin n → M)
:
(FirstOrder.Language.Structure.funMap f fun (i : Fin n) => ⟦x i⟧) = ⟦FirstOrder.Language.Structure.funMap f x⟧
theorem
FirstOrder.Language.relMap_quotient_mk'
{L : FirstOrder.Language}
{M : Type u_1}
(s : Setoid M)
[ps : L.Prestructure s]
{n : ℕ}
(r : L.Relations n)
(x : Fin n → M)
:
(FirstOrder.Language.Structure.RelMap r fun (i : Fin n) => ⟦x i⟧) ↔ FirstOrder.Language.Structure.RelMap r x
theorem
FirstOrder.Language.Term.realize_quotient_mk'
{L : FirstOrder.Language}
{M : Type u_1}
(s : Setoid M)
[ps : L.Prestructure s]
{β : Type u_2}
(t : L.Term β)
(x : β → M)
:
FirstOrder.Language.Term.realize (fun (i : β) => ⟦x i⟧) t = ⟦FirstOrder.Language.Term.realize x t⟧