Documentation

Mathlib.MeasureTheory.Integral.Lebesgue.Norm

Interactions between the Lebesgue integral and norms #

theorem MeasureTheory.lintegral_ofReal_le_lintegral_enorm {α : Type u_1} [MeasurableSpace α] {μ : Measure α} (f : α) :
∫⁻ (x : α), ENNReal.ofReal (f x) μ ∫⁻ (x : α), f x‖ₑ μ
@[deprecated MeasureTheory.lintegral_ofReal_le_lintegral_enorm (since := "2025-01-17")]
theorem MeasureTheory.lintegral_ofReal_le_lintegral_nnnorm {α : Type u_1} [MeasurableSpace α] {μ : Measure α} (f : α) :
∫⁻ (x : α), ENNReal.ofReal (f x) μ ∫⁻ (x : α), f x‖ₑ μ

Alias of MeasureTheory.lintegral_ofReal_le_lintegral_enorm.

theorem MeasureTheory.lintegral_enorm_of_ae_nonneg {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f : α} (h_nonneg : 0 ≤ᶠ[ae μ] f) :
∫⁻ (x : α), f x‖ₑ μ = ∫⁻ (x : α), ENNReal.ofReal (f x) μ
@[deprecated MeasureTheory.lintegral_enorm_of_ae_nonneg (since := "2025-01-17")]
theorem MeasureTheory.lintegral_nnnorm_eq_of_ae_nonneg {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f : α} (h_nonneg : 0 ≤ᶠ[ae μ] f) :
∫⁻ (x : α), f x‖ₑ μ = ∫⁻ (x : α), ENNReal.ofReal (f x) μ

Alias of MeasureTheory.lintegral_enorm_of_ae_nonneg.

theorem MeasureTheory.lintegral_enorm_of_nonneg {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f : α} (h_nonneg : 0 f) :
∫⁻ (x : α), f x‖ₑ μ = ∫⁻ (x : α), ENNReal.ofReal (f x) μ
@[deprecated MeasureTheory.lintegral_enorm_of_nonneg (since := "2025-01-17")]
theorem MeasureTheory.lintegral_nnnorm_eq_of_nonneg {α : Type u_1} [MeasurableSpace α] {μ : Measure α} {f : α} (h_nonneg : 0 f) :
∫⁻ (x : α), f x‖ₑ μ = ∫⁻ (x : α), ENNReal.ofReal (f x) μ

Alias of MeasureTheory.lintegral_enorm_of_nonneg.