Documentation

Mathlib.MeasureTheory.Integral.FinMeasAdditive

Additivity on measurable sets with finite measure #

Let T : Set α → E →L[ℝ] F be additive for measurable sets with finite measure, in the sense that for s, t two such sets, Disjoint s t → T (s ∪ t) = T s + T t. T is akin to a bilinear map on Set α × E, or a linear map on indicator functions.

This property is named FinMeasAdditive in this file. We also define DominatedFinMeasAdditive, which requires in addition that the norm on every set is less than the measure of the set (up to a multiplicative constant); in Mathlib.MeasureTheory.Integral.SetToL1 we extend set functions with this stronger property to integrable (L1) functions.

Main definitions #

Implementation notes #

The starting object T : Set α → E →L[ℝ] F matters only through its restriction on measurable sets with finite measure. Its value on other sets is ignored.

def MeasureTheory.FinMeasAdditive {α : Type u_1} {β : Type u_7} [AddMonoid β] {x✝ : MeasurableSpace α} (μ : Measure α) (T : Set αβ) :

A set function is FinMeasAdditive if its value on the union of two disjoint measurable sets with finite measure is the sum of its values on each set.

Equations
Instances For
    theorem MeasureTheory.FinMeasAdditive.zero {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {β : Type u_7} [AddCommMonoid β] :
    theorem MeasureTheory.FinMeasAdditive.add {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {β : Type u_7} [AddCommMonoid β] {T T' : Set αβ} (hT : FinMeasAdditive μ T) (hT' : FinMeasAdditive μ T') :
    FinMeasAdditive μ (T + T')
    theorem MeasureTheory.FinMeasAdditive.smul {α : Type u_1} {𝕜 : Type u_6} {m : MeasurableSpace α} {μ : Measure α} {β : Type u_7} [AddCommMonoid β] {T : Set αβ} [DistribSMul 𝕜 β] (hT : FinMeasAdditive μ T) (c : 𝕜) :
    FinMeasAdditive μ fun (s : Set α) => c T s
    theorem MeasureTheory.FinMeasAdditive.of_eq_top_imp_eq_top {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {β : Type u_7} [AddCommMonoid β] {T : Set αβ} {μ' : Measure α} (h : ∀ (s : Set α), MeasurableSet sμ s = μ' s = ) (hT : FinMeasAdditive μ T) :
    theorem MeasureTheory.FinMeasAdditive.of_smul_measure {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {β : Type u_7} [AddCommMonoid β] {T : Set αβ} {c : ENNReal} (hc_ne_top : c ) (hT : FinMeasAdditive (c μ) T) :
    theorem MeasureTheory.FinMeasAdditive.smul_measure {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {β : Type u_7} [AddCommMonoid β] {T : Set αβ} (c : ENNReal) (hc_ne_zero : c 0) (hT : FinMeasAdditive μ T) :
    theorem MeasureTheory.FinMeasAdditive.smul_measure_iff {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {β : Type u_7} [AddCommMonoid β] {T : Set αβ} (c : ENNReal) (hc_ne_zero : c 0) (hc_ne_top : c ) :
    theorem MeasureTheory.FinMeasAdditive.map_empty_eq_zero {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {β : Type u_8} [AddCancelMonoid β] {T : Set αβ} (hT : FinMeasAdditive μ T) :
    T = 0
    theorem MeasureTheory.FinMeasAdditive.map_iUnion_fin_meas_set_eq_sum {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {β : Type u_7} [AddCommMonoid β] (T : Set αβ) (T_empty : T = 0) (h_add : FinMeasAdditive μ T) {ι : Type u_8} (S : ιSet α) ( : Finset ι) (hS_meas : ∀ (i : ι), MeasurableSet (S i)) (hSp : i, μ (S i) ) (h_disj : i, j, i jDisjoint (S i) (S j)) :
    T (⋃ i, S i) = i, T (S i)
    def MeasureTheory.DominatedFinMeasAdditive {α : Type u_1} {β : Type u_7} [SeminormedAddCommGroup β] {x✝ : MeasurableSpace α} (μ : Measure α) (T : Set αβ) (C : ) :

    A FinMeasAdditive set function whose norm on every set is less than the measure of the set (up to a multiplicative constant).

    Equations
    Instances For
      theorem MeasureTheory.DominatedFinMeasAdditive.eq_zero_of_measure_zero {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {β : Type u_8} [NormedAddCommGroup β] {T : Set αβ} {C : } (hT : DominatedFinMeasAdditive μ T C) {s : Set α} (hs : MeasurableSet s) (hs_zero : μ s = 0) :
      T s = 0
      theorem MeasureTheory.DominatedFinMeasAdditive.eq_zero {α : Type u_1} {β : Type u_8} [NormedAddCommGroup β] {T : Set αβ} {C : } {x✝ : MeasurableSpace α} (hT : DominatedFinMeasAdditive 0 T C) {s : Set α} (hs : MeasurableSet s) :
      T s = 0
      theorem MeasureTheory.DominatedFinMeasAdditive.add {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {β : Type u_7} [SeminormedAddCommGroup β] {T T' : Set αβ} {C C' : } (hT : DominatedFinMeasAdditive μ T C) (hT' : DominatedFinMeasAdditive μ T' C') :
      DominatedFinMeasAdditive μ (T + T') (C + C')
      theorem MeasureTheory.DominatedFinMeasAdditive.smul {α : Type u_1} {𝕜 : Type u_6} {m : MeasurableSpace α} {μ : Measure α} {β : Type u_7} [SeminormedAddCommGroup β] {T : Set αβ} {C : } [NormedField 𝕜] [NormedSpace 𝕜 β] (hT : DominatedFinMeasAdditive μ T C) (c : 𝕜) :
      DominatedFinMeasAdditive μ (fun (s : Set α) => c T s) (c * C)
      theorem MeasureTheory.DominatedFinMeasAdditive.of_measure_le {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {β : Type u_7} [SeminormedAddCommGroup β] {T : Set αβ} {C : } {μ' : Measure α} (h : μ μ') (hT : DominatedFinMeasAdditive μ T C) (hC : 0 C) :
      theorem MeasureTheory.DominatedFinMeasAdditive.add_measure_right {α : Type u_1} {β : Type u_7} [SeminormedAddCommGroup β] {T : Set αβ} {C : } {x✝ : MeasurableSpace α} (μ ν : Measure α) (hT : DominatedFinMeasAdditive μ T C) (hC : 0 C) :
      theorem MeasureTheory.DominatedFinMeasAdditive.add_measure_left {α : Type u_1} {β : Type u_7} [SeminormedAddCommGroup β] {T : Set αβ} {C : } {x✝ : MeasurableSpace α} (μ ν : Measure α) (hT : DominatedFinMeasAdditive ν T C) (hC : 0 C) :
      theorem MeasureTheory.DominatedFinMeasAdditive.of_smul_measure {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {β : Type u_7} [SeminormedAddCommGroup β] {T : Set αβ} {C : } {c : ENNReal} (hc_ne_top : c ) (hT : DominatedFinMeasAdditive (c μ) T C) :
      theorem MeasureTheory.DominatedFinMeasAdditive.of_measure_le_smul {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {β : Type u_7} [SeminormedAddCommGroup β] {T : Set αβ} {C : } {μ' : Measure α} {c : ENNReal} (hc : c ) (h : μ c μ') (hT : DominatedFinMeasAdditive μ T C) (hC : 0 C) :
      def MeasureTheory.SimpleFunc.setToSimpleFunc {α : Type u_1} {F : Type u_3} {F' : Type u_4} [NormedAddCommGroup F] [NormedSpace F] [NormedAddCommGroup F'] [NormedSpace F'] {x✝ : MeasurableSpace α} (T : Set αF →L[] F') (f : SimpleFunc α F) :
      F'

      Extend Set α → (F →L[ℝ] F') to (α →ₛ F) → F'.

      Equations
      Instances For
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_zero' {α : Type u_1} {E : Type u_2} {F' : Type u_4} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F'] [NormedSpace F'] {m : MeasurableSpace α} {μ : Measure α} {T : Set αE →L[] F'} (h_zero : ∀ (s : Set α), MeasurableSet sμ s < T s = 0) (f : SimpleFunc α E) (hf : Integrable (⇑f) μ) :
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_eq_sum_filter {α : Type u_1} {F : Type u_3} {F' : Type u_4} [NormedAddCommGroup F] [NormedSpace F] [NormedAddCommGroup F'] [NormedSpace F'] [DecidablePred fun (x : F) => x 0] {m : MeasurableSpace α} (T : Set αF →L[] F') (f : SimpleFunc α F) :
        setToSimpleFunc T f = x{xf.range | x 0}, (T (f ⁻¹' {x})) x
        theorem MeasureTheory.SimpleFunc.map_setToSimpleFunc {α : Type u_1} {F : Type u_3} {F' : Type u_4} {G : Type u_5} [NormedAddCommGroup F] [NormedSpace F] [NormedAddCommGroup F'] [NormedSpace F'] [NormedAddCommGroup G] {m : MeasurableSpace α} {μ : Measure α} (T : Set αF →L[] F') (h_add : FinMeasAdditive μ T) {f : SimpleFunc α G} (hf : Integrable (⇑f) μ) {g : GF} (hg : g 0 = 0) :
        setToSimpleFunc T (map g f) = xf.range, (T (f ⁻¹' {x})) (g x)
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_congr' {α : Type u_1} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F] [NormedSpace F] {m : MeasurableSpace α} {μ : Measure α} (T : Set αE →L[] F) (h_add : FinMeasAdditive μ T) {f g : SimpleFunc α E} (hf : Integrable (⇑f) μ) (hg : Integrable (⇑g) μ) (h : Pairwise fun (x y : E) => T (f ⁻¹' {x} g ⁻¹' {y}) = 0) :
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_congr {α : Type u_1} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F] [NormedSpace F] {m : MeasurableSpace α} {μ : Measure α} (T : Set αE →L[] F) (h_zero : ∀ (s : Set α), MeasurableSet sμ s = 0T s = 0) (h_add : FinMeasAdditive μ T) {f g : SimpleFunc α E} (hf : Integrable (⇑f) μ) (h : f =ᶠ[ae μ] g) :
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_congr_left {α : Type u_1} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F] [NormedSpace F] {m : MeasurableSpace α} {μ : Measure α} (T T' : Set αE →L[] F) (h : ∀ (s : Set α), MeasurableSet sμ s < T s = T' s) (f : SimpleFunc α E) (hf : Integrable (⇑f) μ) :
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_add_left' {α : Type u_1} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F] [NormedSpace F] {m : MeasurableSpace α} {μ : Measure α} (T T' T'' : Set αE →L[] F) (h_add : ∀ (s : Set α), MeasurableSet sμ s < T'' s = T s + T' s) {f : SimpleFunc α E} (hf : Integrable (⇑f) μ) :
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_smul_left {α : Type u_1} {F : Type u_3} {F' : Type u_4} [NormedAddCommGroup F] [NormedSpace F] [NormedAddCommGroup F'] [NormedSpace F'] {m : MeasurableSpace α} (T : Set αF →L[] F') (c : ) (f : SimpleFunc α F) :
        setToSimpleFunc (fun (s : Set α) => c T s) f = c setToSimpleFunc T f
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_smul_left' {α : Type u_1} {E : Type u_2} {F' : Type u_4} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F'] [NormedSpace F'] {m : MeasurableSpace α} {μ : Measure α} (T T' : Set αE →L[] F') (c : ) (h_smul : ∀ (s : Set α), MeasurableSet sμ s < T' s = c T s) {f : SimpleFunc α E} (hf : Integrable (⇑f) μ) :
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_add {α : Type u_1} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F] [NormedSpace F] {m : MeasurableSpace α} {μ : Measure α} (T : Set αE →L[] F) (h_add : FinMeasAdditive μ T) {f g : SimpleFunc α E} (hf : Integrable (⇑f) μ) (hg : Integrable (⇑g) μ) :
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_neg {α : Type u_1} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F] [NormedSpace F] {m : MeasurableSpace α} {μ : Measure α} (T : Set αE →L[] F) (h_add : FinMeasAdditive μ T) {f : SimpleFunc α E} (hf : Integrable (⇑f) μ) :
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_sub {α : Type u_1} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F] [NormedSpace F] {m : MeasurableSpace α} {μ : Measure α} (T : Set αE →L[] F) (h_add : FinMeasAdditive μ T) {f g : SimpleFunc α E} (hf : Integrable (⇑f) μ) (hg : Integrable (⇑g) μ) :
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_smul_real {α : Type u_1} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F] [NormedSpace F] {m : MeasurableSpace α} {μ : Measure α} (T : Set αE →L[] F) (h_add : FinMeasAdditive μ T) (c : ) {f : SimpleFunc α E} (hf : Integrable (⇑f) μ) :
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_smul {α : Type u_1} {F : Type u_3} {𝕜 : Type u_6} [NormedAddCommGroup F] [NormedSpace F] {m : MeasurableSpace α} {μ : Measure α} {E : Type u_7} [NormedAddCommGroup E] [SMulZeroClass 𝕜 E] [NormedSpace E] [DistribSMul 𝕜 F] (T : Set αE →L[] F) (h_add : FinMeasAdditive μ T) (h_smul : ∀ (c : 𝕜) (s : Set α) (x : E), (T s) (c x) = c (T s) x) (c : 𝕜) {f : SimpleFunc α E} (hf : Integrable (⇑f) μ) :
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_mono_left {α : Type u_1} {F : Type u_3} [NormedAddCommGroup F] [NormedSpace F] {G'' : Type u_8} [NormedAddCommGroup G''] [Lattice G''] [IsOrderedAddMonoid G''] [NormedSpace G''] {m : MeasurableSpace α} (T T' : Set αF →L[] G'') (hTT' : ∀ (s : Set α) (x : F), (T s) x (T' s) x) (f : SimpleFunc α F) :
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_mono_left' {α : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] {m : MeasurableSpace α} {μ : Measure α} {G'' : Type u_8} [NormedAddCommGroup G''] [Lattice G''] [IsOrderedAddMonoid G''] [NormedSpace G''] (T T' : Set αE →L[] G'') (hTT' : ∀ (s : Set α), MeasurableSet sμ s < ∀ (x : E), (T s) x (T' s) x) (f : SimpleFunc α E) (hf : Integrable (⇑f) μ) :
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_nonneg {α : Type u_1} {G' : Type u_7} {G'' : Type u_8} [NormedAddCommGroup G''] [Lattice G''] [IsOrderedAddMonoid G''] [NormedSpace G''] [NormedAddCommGroup G'] [Lattice G'] [NormedSpace G'] {m : MeasurableSpace α} (T : Set αG' →L[] G'') (hT_nonneg : ∀ (s : Set α) (x : G'), 0 x0 (T s) x) (f : SimpleFunc α G') (hf : 0 f) :
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_nonneg' {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {G' : Type u_7} {G'' : Type u_8} [NormedAddCommGroup G''] [Lattice G''] [IsOrderedAddMonoid G''] [NormedSpace G''] [NormedAddCommGroup G'] [Lattice G'] [NormedSpace G'] (T : Set αG' →L[] G'') (hT_nonneg : ∀ (s : Set α), MeasurableSet sμ s < ∀ (x : G'), 0 x0 (T s) x) (f : SimpleFunc α G') (hf : 0 f) (hfi : Integrable (⇑f) μ) :
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_mono {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {G' : Type u_7} {G'' : Type u_8} [NormedAddCommGroup G''] [Lattice G''] [IsOrderedAddMonoid G''] [NormedSpace G''] [NormedAddCommGroup G'] [Lattice G'] [NormedSpace G'] [IsOrderedAddMonoid G'] {T : Set αG' →L[] G''} (h_add : FinMeasAdditive μ T) (hT_nonneg : ∀ (s : Set α), MeasurableSet sμ s < ∀ (x : G'), 0 x0 (T s) x) {f g : SimpleFunc α G'} (hfi : Integrable (⇑f) μ) (hgi : Integrable (⇑g) μ) (hfg : f g) :
        theorem MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_mul_norm {α : Type u_1} {F : Type u_3} {F' : Type u_4} [NormedAddCommGroup F] [NormedSpace F] [NormedAddCommGroup F'] [NormedSpace F'] {m : MeasurableSpace α} {μ : Measure α} (T : Set αF →L[] F') {C : } (hT_norm : ∀ (s : Set α), MeasurableSet sT s C * (μ s).toReal) (f : SimpleFunc α F) :
        setToSimpleFunc T f C * xf.range, (μ (f ⁻¹' {x})).toReal * x
        theorem MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_mul_norm_of_integrable {α : Type u_1} {E : Type u_2} {F' : Type u_4} [NormedAddCommGroup E] [NormedSpace E] [NormedAddCommGroup F'] [NormedSpace F'] {m : MeasurableSpace α} {μ : Measure α} (T : Set αE →L[] F') {C : } (hT_norm : ∀ (s : Set α), MeasurableSet sμ s < T s C * (μ s).toReal) (f : SimpleFunc α E) (hf : Integrable (⇑f) μ) :
        setToSimpleFunc T f C * xf.range, (μ (f ⁻¹' {x})).toReal * x
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_indicator {α : Type u_1} {F : Type u_3} {F' : Type u_4} [NormedAddCommGroup F] [NormedSpace F] [NormedAddCommGroup F'] [NormedSpace F'] (T : Set αF →L[] F') (hT_empty : T = 0) {m : MeasurableSpace α} {s : Set α} (hs : MeasurableSet s) (x : F) :
        setToSimpleFunc T (piecewise s hs (const α x) (const α 0)) = (T s) x
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_const' {α : Type u_1} {F : Type u_3} {F' : Type u_4} [NormedAddCommGroup F] [NormedSpace F] [NormedAddCommGroup F'] [NormedSpace F'] [Nonempty α] (T : Set αF →L[] F') (x : F) {m : MeasurableSpace α} :
        theorem MeasureTheory.SimpleFunc.setToSimpleFunc_const {α : Type u_1} {F : Type u_3} {F' : Type u_4} [NormedAddCommGroup F] [NormedSpace F] [NormedAddCommGroup F'] [NormedSpace F'] (T : Set αF →L[] F') (hT_empty : T = 0) (x : F) {m : MeasurableSpace α} :