Documentation

Mathlib.MeasureTheory.Function.SpecialFunctions.RCLike

Measurability of the basic RCLike functions #

theorem RCLike.measurable_re {𝕜 : Type u_1} [RCLike 𝕜] :
Measurable RCLike.re
theorem RCLike.measurable_im {𝕜 : Type u_1} [RCLike 𝕜] :
Measurable RCLike.im
theorem Measurable.re {α : Type u_1} {𝕜 : Type u_2} [RCLike 𝕜] {m : MeasurableSpace α} {f : α𝕜} (hf : Measurable f) :
Measurable fun (x : α) => RCLike.re (f x)
theorem AEMeasurable.re {α : Type u_1} {𝕜 : Type u_2} [RCLike 𝕜] {m : MeasurableSpace α} {f : α𝕜} {μ : MeasureTheory.Measure α} (hf : AEMeasurable f μ) :
AEMeasurable (fun (x : α) => RCLike.re (f x)) μ
theorem Measurable.im {α : Type u_1} {𝕜 : Type u_2} [RCLike 𝕜] {m : MeasurableSpace α} {f : α𝕜} (hf : Measurable f) :
Measurable fun (x : α) => RCLike.im (f x)
theorem AEMeasurable.im {α : Type u_1} {𝕜 : Type u_2} [RCLike 𝕜] {m : MeasurableSpace α} {f : α𝕜} {μ : MeasureTheory.Measure α} (hf : AEMeasurable f μ) :
AEMeasurable (fun (x : α) => RCLike.im (f x)) μ
theorem RCLike.measurable_ofReal {𝕜 : Type u_2} [RCLike 𝕜] :
Measurable RCLike.ofReal
theorem measurable_of_re_im {α : Type u_1} {𝕜 : Type u_2} [RCLike 𝕜] [MeasurableSpace α] {f : α𝕜} (hre : Measurable fun (x : α) => RCLike.re (f x)) (him : Measurable fun (x : α) => RCLike.im (f x)) :
theorem aemeasurable_of_re_im {α : Type u_1} {𝕜 : Type u_2} [RCLike 𝕜] [MeasurableSpace α] {f : α𝕜} {μ : MeasureTheory.Measure α} (hre : AEMeasurable (fun (x : α) => RCLike.re (f x)) μ) (him : AEMeasurable (fun (x : α) => RCLike.im (f x)) μ) :