Documentation

Mathlib.MeasureTheory.Function.LpSpace.DomAct.Basic

Action of Mᵈᵐᵃ on Lᵖ spaces #

In this file we define action of Mᵈᵐᵃ on MeasureTheory.Lp E p μ If f : α → E is a function representing an equivalence class in Lᵖ(α, E), M acts on α, and c : M, then (.mk c : Mᵈᵐᵃ) • [f] is represented by the function a ↦ f (c • a).

We also prove basic properties of this action.

Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem DomMulAct.smul_Lp_val {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : Mᵈᵐᵃ) (f : (MeasureTheory.Lp E p μ)) :
(c f) = c f
@[simp]
theorem DomAddAct.vadd_Lp_val {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : Mᵈᵃᵃ) (f : (MeasureTheory.Lp E p μ)) :
(c +ᵥ f) = c +ᵥ f
theorem DomMulAct.smul_Lp_ae_eq {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : Mᵈᵐᵃ) (f : (MeasureTheory.Lp E p μ)) :
(c f) =ᵐ[μ] fun (x : α) => f (DomMulAct.mk.symm c x)
theorem DomAddAct.vadd_Lp_ae_eq {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : Mᵈᵃᵃ) (f : (MeasureTheory.Lp E p μ)) :
(c +ᵥ f) =ᵐ[μ] fun (x : α) => f (DomAddAct.mk.symm c +ᵥ x)
theorem DomMulAct.mk_smul_toLp {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : M) {f : αE} (hf : MeasureTheory.Memℒp f p μ) :
DomMulAct.mk c MeasureTheory.Memℒp.toLp f hf = MeasureTheory.Memℒp.toLp (fun (x : α) => f (c x))
theorem DomAddAct.mk_vadd_toLp {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : M) {f : αE} (hf : MeasureTheory.Memℒp f p μ) :
DomAddAct.mk c +ᵥ MeasureTheory.Memℒp.toLp f hf = MeasureTheory.Memℒp.toLp (fun (x : α) => f (c +ᵥ x))
theorem DomMulAct.mk_smul_indicatorConstLp {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : M) {s : Set α} (hs : MeasurableSet s) (hμs : μ s ) (b : E) :
theorem DomAddAct.mk_vadd_indicatorConstLp {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : M) {s : Set α} (hs : MeasurableSet s) (hμs : μ s ) (b : E) :
theorem DomMulAct.smul_Lp_add {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : Mᵈᵐᵃ) (f g : (MeasureTheory.Lp E p μ)) :
c (f + g) = c f + c g
@[simp]
theorem DomAddAct.vadd_Lp_add {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : Mᵈᵃᵃ) (f g : (MeasureTheory.Lp E p μ)) :
c +ᵥ f + g = (c +ᵥ f) + (c +ᵥ g)
@[simp]
theorem DomMulAct.smul_Lp_zero {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : Mᵈᵐᵃ) :
c 0 = 0
@[simp]
theorem DomAddAct.vadd_Lp_zero {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : Mᵈᵃᵃ) :
c +ᵥ 0 = 0
theorem DomMulAct.smul_Lp_neg {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : Mᵈᵐᵃ) (f : (MeasureTheory.Lp E p μ)) :
c -f = -(c f)
theorem DomAddAct.vadd_Lp_neg {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : Mᵈᵃᵃ) (f : (MeasureTheory.Lp E p μ)) :
c +ᵥ -f = -(c +ᵥ f)
theorem DomMulAct.smul_Lp_sub {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : Mᵈᵐᵃ) (f g : (MeasureTheory.Lp E p μ)) :
c (f - g) = c f - c g
theorem DomAddAct.vadd_Lp_sub {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : Mᵈᵃᵃ) (f g : (MeasureTheory.Lp E p μ)) :
c +ᵥ f - g = (c +ᵥ f) - (c +ᵥ g)
@[simp]
theorem DomMulAct.norm_smul_Lp {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : Mᵈᵐᵃ) (f : (MeasureTheory.Lp E p μ)) :
@[simp]
theorem DomAddAct.norm_vadd_Lp {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : Mᵈᵃᵃ) (f : (MeasureTheory.Lp E p μ)) :
@[simp]
@[simp]
@[simp]
theorem DomMulAct.dist_smul_Lp {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : Mᵈᵐᵃ) (f g : (MeasureTheory.Lp E p μ)) :
dist (c f) (c g) = dist f g
@[simp]
theorem DomAddAct.dist_vadd_Lp {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : Mᵈᵃᵃ) (f g : (MeasureTheory.Lp E p μ)) :
dist (c +ᵥ f) (c +ᵥ g) = dist f g
@[simp]
theorem DomMulAct.edist_smul_Lp {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [SMul M α] [MeasureTheory.SMulInvariantMeasure M α μ] [MeasurableSMul M α] (c : Mᵈᵐᵃ) (f g : (MeasureTheory.Lp E p μ)) :
edist (c f) (c g) = edist f g
@[simp]
theorem DomAddAct.edist_vadd_Lp {M : Type u_1} {α : Type u_3} {E : Type u_4} [MeasurableSpace M] [MeasurableSpace α] [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p : ENNReal} [VAdd M α] [MeasureTheory.VAddInvariantMeasure M α μ] [MeasurableVAdd M α] (c : Mᵈᵃᵃ) (f g : (MeasureTheory.Lp E p μ)) :
edist (c +ᵥ f) (c +ᵥ g) = edist f g
Equations
  • One or more equations did not get rendered due to their size.