Documentation

Mathlib.MeasureTheory.Constructions.BorelSpace.ContinuousLinearMap

Measurable functions in normed spaces #

theorem ContinuousLinearMap.measurable_comp {α : Type u_1} [MeasurableSpace α] {𝕜 : Type u_2} [NormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [MeasurableSpace E] [OpensMeasurableSpace E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [MeasurableSpace F] [BorelSpace F] (L : E →L[𝕜] F) {φ : αE} (φ_meas : Measurable φ) :
Measurable fun (a : α) => L (φ a)
Equations
  • ContinuousLinearMap.instMeasurableSpace = borel (E →L[𝕜] F)
instance ContinuousLinearMap.instBorelSpace {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace 𝕜 F] :
BorelSpace (E →L[𝕜] F)
Equations
  • =
theorem ContinuousLinearMap.measurable_apply {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [MeasurableSpace F] [BorelSpace F] (x : E) :
Measurable fun (f : E →L[𝕜] F) => f x
theorem ContinuousLinearMap.measurable_coe {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [MeasurableSpace F] [BorelSpace F] :
Measurable fun (f : E →L[𝕜] F) (x : E) => f x
theorem Measurable.apply_continuousLinearMap {α : Type u_1} [MeasurableSpace α] {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [MeasurableSpace E] [BorelSpace E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {φ : αF →L[𝕜] E} (hφ : Measurable φ) (v : F) :
Measurable fun (a : α) => (φ a) v
theorem AEMeasurable.apply_continuousLinearMap {α : Type u_1} [MeasurableSpace α] {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [MeasurableSpace E] [BorelSpace E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {φ : αF →L[𝕜] E} {μ : MeasureTheory.Measure α} (hφ : AEMeasurable φ μ) (v : F) :
AEMeasurable (fun (a : α) => (φ a) v) μ
theorem measurable_smul_const {α : Type u_1} [MeasurableSpace α] {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] [CompleteSpace 𝕜] [MeasurableSpace 𝕜] [BorelSpace 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [MeasurableSpace E] [BorelSpace E] {f : α𝕜} {c : E} (hc : c 0) :
(Measurable fun (x : α) => f x c) Measurable f
theorem aemeasurable_smul_const {α : Type u_1} [MeasurableSpace α] {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] [CompleteSpace 𝕜] [MeasurableSpace 𝕜] [BorelSpace 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [MeasurableSpace E] [BorelSpace E] {f : α𝕜} {μ : MeasureTheory.Measure α} {c : E} (hc : c 0) :
AEMeasurable (fun (x : α) => f x c) μ AEMeasurable f μ