Documentation

Mathlib.Logic.Function.FiberPartition

This file defines the type f.Fiber of fibers of a function f : Y → Z, and provides some API to work with and construct terms of this type.

Note: this API is designed to be useful when defining the counit of the adjunction between the functor which takes a set to the condensed set corresponding to locally constant maps to that set, and the forgetful functor from the category of condensed sets to the category of sets (see PR #14027).

def Function.Fiber {Y : Type u_2} {Z : Type u_3} (f : YZ) :
Type u_2

The indexing set of the partition.

Equations
Instances For
    noncomputable def Function.Fiber.image {Y : Type u_2} {Z : Type u_3} (f : YZ) (a : Function.Fiber f) :
    Z

    Any a : Fiber f is of the form f ⁻¹' {x} for some x in the image of f. We define a.image as an arbitrary such x.

    Equations
    Instances For
      theorem Function.Fiber.eq_fiber_image {Y : Type u_2} {Z : Type u_3} (f : YZ) (a : Function.Fiber f) :
      def Function.Fiber.mk {Y : Type u_2} {Z : Type u_3} (f : YZ) (y : Y) :

      Given y : Y, Fiber.mk f y is the fiber of f that y belongs to, as an element of Fiber f.

      Equations
      Instances For
        def Function.Fiber.mkSelf {Y : Type u_2} {Z : Type u_3} (f : YZ) (y : Y) :
        (Function.Fiber.mk f y)

        y : Y as a term of the type Fiber.mk f y

        Equations
        Instances For
          theorem Function.Fiber.map_eq_image {Y : Type u_2} {Z : Type u_3} (f : YZ) (a : Function.Fiber f) (x : a) :
          theorem Function.Fiber.mk_image {Y : Type u_2} {Z : Type u_3} (f : YZ) (y : Y) :
          theorem Function.Fiber.mem_iff_eq_image {Y : Type u_2} {Z : Type u_3} (f : YZ) (y : Y) (a : Function.Fiber f) :
          y a f y = Function.Fiber.image f a
          noncomputable def Function.Fiber.preimage {Y : Type u_2} {Z : Type u_3} (f : YZ) (a : Function.Fiber f) :
          Y

          An arbitrary element of a : Fiber f.

          Equations
          Instances For
            theorem Function.Fiber.fiber_nonempty {Y : Type u_2} {Z : Type u_3} (f : YZ) (a : Function.Fiber f) :
            (↑a).Nonempty
            theorem Function.Fiber.map_preimage_eq_image_map {Y : Type u_2} {Z : Type u_3} {W : Type u_4} (f : YZ) (g : ZW) (a : Function.Fiber (g f)) :
            theorem Function.Fiber.image_eq_image_mk {X : Type u_1} {Y : Type u_2} {Z : Type u_3} (f : YZ) (g : XY) (a : Function.Fiber (f g)) :