Tensor product and products #
In this file we examine the behaviour of the tensor product with arbitrary and finite products.
Let S
be an R
-algebra, N
an S
-module and ι
an index type. We then have a natural map
TensorProduct.piScalarRightHom
: N ⊗[R] (ι → R) →ₗ[S] (ι → N)
In general, this is not an isomorphism, but if ι
is finite, then it is
and it is packaged as TensorProduct.piScalarRight
.
Notes #
See Mathlib.LinearAlgebra.TensorProduct.Prod
for binary products.
noncomputable def
TensorProduct.piScalarRightHom
(R : Type u_1)
[CommSemiring R]
(S : Type u_2)
[CommSemiring S]
[Algebra R S]
(N : Type u_3)
[AddCommMonoid N]
[Module R N]
[Module S N]
[IsScalarTower R S N]
(ι : Type u_4)
:
TensorProduct R N (ι → R) →ₗ[S] ι → N
For any R
-module N
and index type ι
, there is a natural
linear map N ⊗[R] (ι → R) →ₗ (ι → N)
. This map is an isomorphism if ι
is finite.
Equations
Instances For
@[simp]
theorem
TensorProduct.piScalarRightHom_tmul
(R : Type u_1)
[CommSemiring R]
(S : Type u_2)
[CommSemiring S]
[Algebra R S]
(N : Type u_3)
[AddCommMonoid N]
[Module R N]
[Module S N]
[IsScalarTower R S N]
(ι : Type u_4)
(x : N)
(f : ι → R)
:
(TensorProduct.piScalarRightHom R S N ι) (x ⊗ₜ[R] f) = fun (j : ι) => f j • x
noncomputable def
TensorProduct.piScalarRight
(R : Type u_1)
[CommSemiring R]
(S : Type u_2)
[CommSemiring S]
[Algebra R S]
(N : Type u_3)
[AddCommMonoid N]
[Module R N]
[Module S N]
[IsScalarTower R S N]
(ι : Type u_4)
[Fintype ι]
[DecidableEq ι]
:
TensorProduct R N (ι → R) ≃ₗ[S] ι → N
For any R
-module N
and finite index type ι
, N ⊗[R] (ι → R)
is canonically
isomorphic to ι → N
.
Equations
- TensorProduct.piScalarRight R S N ι = LinearEquiv.ofLinear (TensorProduct.piScalarRightHom R S N ι) (TensorProduct.piScalarRightInv R S N ι) ⋯ ⋯
Instances For
@[simp]
theorem
TensorProduct.piScalarRight_apply
(R : Type u_1)
[CommSemiring R]
(S : Type u_2)
[CommSemiring S]
[Algebra R S]
(N : Type u_3)
[AddCommMonoid N]
[Module R N]
[Module S N]
[IsScalarTower R S N]
(ι : Type u_4)
[Fintype ι]
[DecidableEq ι]
(x : TensorProduct R N (ι → R))
:
(TensorProduct.piScalarRight R S N ι) x = (TensorProduct.piScalarRightHom R S N ι) x
@[simp]
theorem
TensorProduct.piScalarRight_symm_single
(R : Type u_1)
[CommSemiring R]
(S : Type u_2)
[CommSemiring S]
[Algebra R S]
(N : Type u_3)
[AddCommMonoid N]
[Module R N]
[Module S N]
[IsScalarTower R S N]
(ι : Type u_4)
[Fintype ι]
[DecidableEq ι]
(x : N)
(i : ι)
: