Documentation

Mathlib.LinearAlgebra.TensorPower.Pairing

The pairing between the tensor power of the dual and the tensor power #

We construct the pairing TensorPower.pairingDual : ⨂[R]^n (Module.Dual R M) →ₗ[R] (Module.Dual R (⨂[R]^n M)).

noncomputable def TensorPower.multilinearMapToDual (R : Type u_1) (M : Type u_2) [CommSemiring R] [AddCommMonoid M] [Module R M] (n : ) :
MultilinearMap R (fun (x : Fin n) => Module.Dual R M) (Module.Dual R (TensorPower R n M))

The canonical multilinear map from n copies of the dual of the module M to the dual of ⨂[R]^n M.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem TensorPower.multilinearMapToDual_apply_tprod {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {n : } (f : Fin nModule.Dual R M) (v : Fin nM) :
    ((TensorPower.multilinearMapToDual R M n) f) ((PiTensorProduct.tprod R) v) = i : Fin n, (f i) (v i)
    noncomputable def TensorPower.pairingDual (R : Type u_1) (M : Type u_2) [CommSemiring R] [AddCommMonoid M] [Module R M] (n : ) :

    The linear map from the tensor power of the dual to the dual of the tensor power.

    Equations
    Instances For
      @[simp]
      theorem TensorPower.pairingDual_tprod_tprod {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {n : } (f : Fin nModule.Dual R M) (v : Fin nM) :
      ((TensorPower.pairingDual R M n) ((PiTensorProduct.tprod R) f)) ((PiTensorProduct.tprod R) v) = i : Fin n, (f i) (v i)