Tensor algebras as direct sums of tensor powers #
In this file we show that TensorAlgebra R M
is isomorphic to a direct sum of tensor powers, as
TensorAlgebra.equivDirectSum
.
noncomputable def
TensorPower.toTensorAlgebra
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
{n : ℕ}
:
TensorPower R n M →ₗ[R] TensorAlgebra R M
The canonical embedding from a tensor power to the tensor algebra
Equations
- TensorPower.toTensorAlgebra = PiTensorProduct.lift (TensorAlgebra.tprod R M n)
Instances For
@[simp]
theorem
TensorPower.toTensorAlgebra_tprod
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
{n : ℕ}
(x : Fin n → M)
:
TensorPower.toTensorAlgebra ((PiTensorProduct.tprod R) x) = (TensorAlgebra.tprod R M n) x
@[simp]
theorem
TensorPower.toTensorAlgebra_gOne
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
:
TensorPower.toTensorAlgebra GradedMonoid.GOne.one = 1
@[simp]
theorem
TensorPower.toTensorAlgebra_gMul
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
{i j : ℕ}
(a : TensorPower R i M)
(b : TensorPower R j M)
:
TensorPower.toTensorAlgebra (GradedMonoid.GMul.mul a b) = TensorPower.toTensorAlgebra a * TensorPower.toTensorAlgebra b
@[simp]
theorem
TensorPower.toTensorAlgebra_galgebra_toFun
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
(r : R)
:
TensorPower.toTensorAlgebra (DirectSum.GAlgebra.toFun r) = (algebraMap R (TensorAlgebra R M)) r
noncomputable def
TensorAlgebra.ofDirectSum
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
:
(DirectSum ℕ fun (n : ℕ) => TensorPower R n M) →ₐ[R] TensorAlgebra R M
The canonical map from a direct sum of tensor powers to the tensor algebra.
Equations
- TensorAlgebra.ofDirectSum = DirectSum.toAlgebra R (fun (n : ℕ) => TensorPower R n M) (fun (x : ℕ) => TensorPower.toTensorAlgebra) ⋯ ⋯
Instances For
@[simp]
theorem
TensorAlgebra.ofDirectSum_of_tprod
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
{n : ℕ}
(x : Fin n → M)
:
TensorAlgebra.ofDirectSum ((DirectSum.of (fun (n : ℕ) => TensorPower R n M) n) ((PiTensorProduct.tprod R) x)) = (TensorAlgebra.tprod R M n) x
noncomputable def
TensorAlgebra.toDirectSum
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
:
TensorAlgebra R M →ₐ[R] DirectSum ℕ fun (n : ℕ) => TensorPower R n M
The canonical map from the tensor algebra to a direct sum of tensor powers.
Equations
- TensorAlgebra.toDirectSum = (TensorAlgebra.lift R) (DirectSum.lof R ℕ (fun (n : ℕ) => TensorPower R n M) 1 ∘ₗ ↑(PiTensorProduct.subsingletonEquiv 0).symm)
Instances For
@[simp]
theorem
TensorAlgebra.toDirectSum_ι
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
(x : M)
:
TensorAlgebra.toDirectSum ((TensorAlgebra.ι R) x) = (DirectSum.of (fun (n : ℕ) => TensorPower R n M) 1) ((PiTensorProduct.tprod R) fun (x_1 : Fin 1) => x)
theorem
TensorAlgebra.ofDirectSum_comp_toDirectSum
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
:
@[simp]
theorem
TensorAlgebra.ofDirectSum_toDirectSum
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
(x : TensorAlgebra R M)
:
TensorAlgebra.ofDirectSum (TensorAlgebra.toDirectSum x) = x
@[simp]
theorem
TensorAlgebra.mk_reindex_cast
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
{n m : ℕ}
(h : n = m)
(x : TensorPower R n M)
:
GradedMonoid.mk m ((PiTensorProduct.reindex R (fun (x : Fin n) => M) (Equiv.cast ⋯)) x) = GradedMonoid.mk n x
@[simp]
theorem
TensorAlgebra.mk_reindex_fin_cast
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
{n m : ℕ}
(h : n = m)
(x : TensorPower R n M)
:
GradedMonoid.mk m ((PiTensorProduct.reindex R (fun (x : Fin n) => M) (finCongr h)) x) = GradedMonoid.mk n x
theorem
TensorPower.list_prod_gradedMonoid_mk_single
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
(n : ℕ)
(x : Fin n → M)
:
(List.map (fun (a : Fin n) => GradedMonoid.mk 1 ((PiTensorProduct.tprod R) fun (x_1 : Fin 1) => x a))
(List.finRange n)).prod = GradedMonoid.mk n ((PiTensorProduct.tprod R) x)
The product of tensor products made of a single vector is the same as a single product of all the vectors.
theorem
TensorAlgebra.toDirectSum_tensorPower_tprod
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
{n : ℕ}
(x : Fin n → M)
:
TensorAlgebra.toDirectSum ((TensorAlgebra.tprod R M n) x) = (DirectSum.of (fun (i : ℕ) => TensorPower R i M) n) ((PiTensorProduct.tprod R) x)
theorem
TensorAlgebra.toDirectSum_comp_ofDirectSum
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
:
TensorAlgebra.toDirectSum.comp TensorAlgebra.ofDirectSum = AlgHom.id R (DirectSum ℕ fun (n : ℕ) => TensorPower R n M)
@[simp]
theorem
TensorAlgebra.toDirectSum_ofDirectSum
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
(x : DirectSum ℕ fun (n : ℕ) => TensorPower R n M)
:
TensorAlgebra.toDirectSum (TensorAlgebra.ofDirectSum x) = x
noncomputable def
TensorAlgebra.equivDirectSum
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
:
TensorAlgebra R M ≃ₐ[R] DirectSum ℕ fun (n : ℕ) => TensorPower R n M
The tensor algebra is isomorphic to a direct sum of tensor powers.
Equations
Instances For
@[simp]
theorem
TensorAlgebra.equivDirectSum_symm_apply
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
(a : DirectSum ℕ fun (n : ℕ) => TensorPower R n M)
:
TensorAlgebra.equivDirectSum.symm a = TensorAlgebra.ofDirectSum a
@[simp]
theorem
TensorAlgebra.equivDirectSum_apply
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
(a : TensorAlgebra R M)
:
TensorAlgebra.equivDirectSum a = TensorAlgebra.toDirectSum a