Structural lemmas about finite crystallographic root pairings #
In this file we gather basic lemmas necessary for the classification of finite crystallographic root pairings.
Main results: #
RootPairing.coxeterWeightIn_mem_set_of_isCrystallographic
: the Coxeter weights of a finite crystallographic root pairing belong to the set{0, 1, 2, 3, 4}
.RootPairing.root_sub_root_mem_of_pairingIn_pos
: ifα ≠ β
are both roots of a finite crystallographic root pairing, and the pairing ofα
withβ
is positive, thenα - β
is also a root.RootPairing.root_add_root_mem_of_pairingIn_neg
: ifα ≠ -β
are both roots of a finite crystallographic root pairing, and the pairing ofα
withβ
is negative, thenα + β
is also a root.
theorem
RootPairing.coxeterWeightIn_le_four
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
[Finite ι]
(S : Type u_5)
[LinearOrderedCommRing S]
[Algebra S R]
[FaithfulSMul S R]
[Module S M]
[IsScalarTower S R M]
[P.IsValuedIn S]
(i j : ι)
:
SGA3 XXI Prop. 2.3.1
theorem
RootPairing.coxeterWeightIn_mem_set_of_isCrystallographic
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
[Finite ι]
[CharZero R]
[P.IsCrystallographic]
(i j : ι)
:
theorem
RootPairing.pairingIn_pairingIn_mem_set_of_isCrystallographic
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
[Finite ι]
[CharZero R]
[P.IsCrystallographic]
(i j : ι)
[NoZeroDivisors R]
:
theorem
RootPairing.pairingIn_pairingIn_mem_set_of_isCrystallographic_of_isReduced
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
[Finite ι]
[CharZero R]
[P.IsCrystallographic]
(i j : ι)
[NoZeroDivisors R]
[P.IsReduced]
[NoZeroSMulDivisors R M]
:
theorem
RootPairing.coxeterWeightIn_eq_zero_iff
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
[Finite ι]
[CharZero R]
[P.IsCrystallographic]
(i j : ι)
[NoZeroDivisors R]
:
theorem
RootPairing.root_sub_root_mem_of_pairingIn_pos
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
[Finite ι]
[CharZero R]
[P.IsCrystallographic]
{i j : ι}
[NoZeroDivisors R]
[NoZeroSMulDivisors R M]
[NoZeroSMulDivisors R N]
(h : 0 < P.pairingIn ℤ i j)
(h' : i ≠ j)
:
theorem
RootPairing.root_add_root_mem_of_pairingIn_neg
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
[Finite ι]
[CharZero R]
[P.IsCrystallographic]
{i j : ι}
[NoZeroDivisors R]
[NoZeroSMulDivisors R M]
[NoZeroSMulDivisors R N]
(h : P.pairingIn ℤ i j < 0)
(h' : P.root i ≠ -P.root j)
:
theorem
RootPairing.InvariantForm.apply_eq_or_aux
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
{P : RootPairing ι R M N}
[Finite ι]
[CharZero R]
[P.IsCrystallographic]
[NoZeroDivisors R]
[NoZeroSMulDivisors R M]
[P.IsReduced]
(B : P.InvariantForm)
(i j : ι)
(h : P.pairingIn ℤ i j ≠ 0)
:
(B.form (P.root i)) (P.root i) = (B.form (P.root j)) (P.root j) ∨ (B.form (P.root i)) (P.root i) = 2 * (B.form (P.root j)) (P.root j) ∨ (B.form (P.root i)) (P.root i) = 3 * (B.form (P.root j)) (P.root j) ∨ (B.form (P.root j)) (P.root j) = 2 * (B.form (P.root i)) (P.root i) ∨ (B.form (P.root j)) (P.root j) = 3 * (B.form (P.root i)) (P.root i)
theorem
RootPairing.InvariantForm.apply_eq_or
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
{P : RootPairing ι R M N}
[Finite ι]
[CharZero R]
[P.IsCrystallographic]
[NoZeroDivisors R]
[NoZeroSMulDivisors R M]
[P.IsReduced]
(B : P.InvariantForm)
[P.IsIrreducible]
(i j : ι)
:
(B.form (P.root i)) (P.root i) = (B.form (P.root j)) (P.root j) ∨ (B.form (P.root i)) (P.root i) = 2 * (B.form (P.root j)) (P.root j) ∨ (B.form (P.root i)) (P.root i) = 3 * (B.form (P.root j)) (P.root j) ∨ (B.form (P.root j)) (P.root j) = 2 * (B.form (P.root i)) (P.root i) ∨ (B.form (P.root j)) (P.root j) = 3 * (B.form (P.root i)) (P.root i)
Relative of lengths of roots in a reduced irreducible finite crystallographic root pairing are very constrained.
theorem
RootPairing.InvariantForm.exists_apply_eq_or
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
{P : RootPairing ι R M N}
[Finite ι]
[CharZero R]
[P.IsCrystallographic]
[NoZeroDivisors R]
[NoZeroSMulDivisors R M]
[P.IsReduced]
(B : P.InvariantForm)
[P.IsIrreducible]
[Nonempty ι]
:
A reduced irreducible finite crystallographic root system has roots of at most two different lengths.
theorem
RootPairing.InvariantForm.apply_eq_or_of_apply_ne
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
{P : RootPairing ι R M N}
[Finite ι]
[CharZero R]
[P.IsCrystallographic]
{i j : ι}
[NoZeroDivisors R]
[NoZeroSMulDivisors R M]
[P.IsReduced]
(B : P.InvariantForm)
[P.IsIrreducible]
(h : (B.form (P.root i)) (P.root i) ≠ (B.form (P.root j)) (P.root j))
(k : ι)
:
theorem
RootPairing.Base.pairingIn_le_zero_of_ne
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
{P : RootPairing ι R M N}
[Finite ι]
[CharZero R]
[P.IsCrystallographic]
[NoZeroDivisors R]
[NoZeroSMulDivisors R M]
[NoZeroSMulDivisors R N]
(b : P.Base)
{i j : ι}
(hij : i ≠ j)
(hi : i ∈ b.support)
(hj : j ∈ b.support)
:
theorem
RootPairing.Base.root_sub_root_mem_of_mem_of_mem
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
{P : RootPairing ι R M N}
[Finite ι]
[CharZero R]
[P.IsCrystallographic]
[NoZeroDivisors R]
[NoZeroSMulDivisors R M]
[NoZeroSMulDivisors R N]
(b : P.Base)
(i j k : ι)
(hij : i ≠ j)
(hi : i ∈ b.support)
(hj : j ∈ b.support)
(hk : P.root k + P.root i - P.root j ∈ Set.range ⇑P.root)
(hkj : k ≠ j)
(hk' : P.root k + P.root i ∈ Set.range ⇑P.root)
:
This is Lemma 2.5 (a) from Geck.
theorem
RootPairing.Base.root_add_root_mem_of_mem_of_mem
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
{P : RootPairing ι R M N}
[Finite ι]
[CharZero R]
[P.IsCrystallographic]
[NoZeroDivisors R]
[NoZeroSMulDivisors R M]
[NoZeroSMulDivisors R N]
(b : P.Base)
(i j k : ι)
(hij : i ≠ j)
(hi : i ∈ b.support)
(hj : j ∈ b.support)
(hk : P.root k + P.root i - P.root j ∈ Set.range ⇑P.root)
(hkj : P.root k ≠ -P.root i)
(hk' : P.root k - P.root j ∈ Set.range ⇑P.root)
:
This is Lemma 2.5 (b) from Geck.