Documentation

Mathlib.LinearAlgebra.RootSystem.Finite.Lemmas

Structural lemmas about finite crystallographic root pairings #

In this file we gather basic lemmas necessary for the classification of finite crystallographic root pairings.

Main results: #

theorem RootPairing.coxeterWeightIn_le_four {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) [Finite ι] (S : Type u_5) [LinearOrderedCommRing S] [Algebra S R] [FaithfulSMul S R] [Module S M] [IsScalarTower S R M] [P.IsValuedIn S] (i j : ι) :

SGA3 XXI Prop. 2.3.1

theorem RootPairing.coxeterWeightIn_mem_set_of_isCrystallographic {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) [Finite ι] [CharZero R] [P.IsCrystallographic] (i j : ι) :
P.coxeterWeightIn i j {0, 1, 2, 3, 4}
theorem RootPairing.pairingIn_pairingIn_mem_set_of_isCrystallographic {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) [Finite ι] [CharZero R] [P.IsCrystallographic] (i j : ι) [NoZeroDivisors R] :
(P.pairingIn i j, P.pairingIn j i) {(0, 0), (1, 1), (-1, -1), (1, 2), (2, 1), (-1, -2), (-2, -1), (1, 3), (3, 1), (-1, -3), (-3, -1), (4, 1), (1, 4), (-4, -1), (-1, -4), (2, 2), (-2, -2)}
theorem RootPairing.pairingIn_pairingIn_mem_set_of_isCrystallographic_of_isReduced {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) [Finite ι] [CharZero R] [P.IsCrystallographic] (i j : ι) [NoZeroDivisors R] [P.IsReduced] [NoZeroSMulDivisors R M] :
(P.pairingIn i j, P.pairingIn j i) {(0, 0), (1, 1), (-1, -1), (1, 2), (2, 1), (-1, -2), (-2, -1), (1, 3), (3, 1), (-1, -3), (-3, -1), (2, 2), (-2, -2)}
theorem RootPairing.coxeterWeightIn_eq_zero_iff {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) [Finite ι] [CharZero R] [P.IsCrystallographic] (i j : ι) [NoZeroDivisors R] :
theorem RootPairing.root_sub_root_mem_of_pairingIn_pos {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) [Finite ι] [CharZero R] [P.IsCrystallographic] {i j : ι} [NoZeroDivisors R] [NoZeroSMulDivisors R M] [NoZeroSMulDivisors R N] (h : 0 < P.pairingIn i j) (h' : i j) :
P.root i - P.root j Set.range P.root
theorem RootPairing.root_add_root_mem_of_pairingIn_neg {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) [Finite ι] [CharZero R] [P.IsCrystallographic] {i j : ι} [NoZeroDivisors R] [NoZeroSMulDivisors R M] [NoZeroSMulDivisors R N] (h : P.pairingIn i j < 0) (h' : P.root i -P.root j) :
P.root i + P.root j Set.range P.root
theorem RootPairing.InvariantForm.apply_eq_or_aux {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [Finite ι] [CharZero R] [P.IsCrystallographic] [NoZeroDivisors R] [NoZeroSMulDivisors R M] [P.IsReduced] (B : P.InvariantForm) (i j : ι) (h : P.pairingIn i j 0) :
(B.form (P.root i)) (P.root i) = (B.form (P.root j)) (P.root j) (B.form (P.root i)) (P.root i) = 2 * (B.form (P.root j)) (P.root j) (B.form (P.root i)) (P.root i) = 3 * (B.form (P.root j)) (P.root j) (B.form (P.root j)) (P.root j) = 2 * (B.form (P.root i)) (P.root i) (B.form (P.root j)) (P.root j) = 3 * (B.form (P.root i)) (P.root i)
theorem RootPairing.InvariantForm.apply_eq_or {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [Finite ι] [CharZero R] [P.IsCrystallographic] [NoZeroDivisors R] [NoZeroSMulDivisors R M] [P.IsReduced] (B : P.InvariantForm) [P.IsIrreducible] (i j : ι) :
(B.form (P.root i)) (P.root i) = (B.form (P.root j)) (P.root j) (B.form (P.root i)) (P.root i) = 2 * (B.form (P.root j)) (P.root j) (B.form (P.root i)) (P.root i) = 3 * (B.form (P.root j)) (P.root j) (B.form (P.root j)) (P.root j) = 2 * (B.form (P.root i)) (P.root i) (B.form (P.root j)) (P.root j) = 3 * (B.form (P.root i)) (P.root i)

Relative of lengths of roots in a reduced irreducible finite crystallographic root pairing are very constrained.

theorem RootPairing.InvariantForm.exists_apply_eq_or_aux {R : Type u_2} [CommRing R] [CharZero R] [NoZeroDivisors R] {x y z : R} (hij : x = 2 * y x = 3 * y y = 2 * x y = 3 * x) (hik : x = 2 * z x = 3 * z z = 2 * x z = 3 * x) (hjk : y = 2 * z y = 3 * z z = 2 * y z = 3 * y) :
x = 0 y = 0 z = 0
theorem RootPairing.InvariantForm.exists_apply_eq_or {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [Finite ι] [CharZero R] [P.IsCrystallographic] [NoZeroDivisors R] [NoZeroSMulDivisors R M] [P.IsReduced] (B : P.InvariantForm) [P.IsIrreducible] [Nonempty ι] :
∃ (i : ι) (j : ι), ∀ (k : ι), (B.form (P.root k)) (P.root k) = (B.form (P.root i)) (P.root i) (B.form (P.root k)) (P.root k) = (B.form (P.root j)) (P.root j)

A reduced irreducible finite crystallographic root system has roots of at most two different lengths.

theorem RootPairing.InvariantForm.apply_eq_or_of_apply_ne {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [Finite ι] [CharZero R] [P.IsCrystallographic] {i j : ι} [NoZeroDivisors R] [NoZeroSMulDivisors R M] [P.IsReduced] (B : P.InvariantForm) [P.IsIrreducible] (h : (B.form (P.root i)) (P.root i) (B.form (P.root j)) (P.root j)) (k : ι) :
(B.form (P.root k)) (P.root k) = (B.form (P.root i)) (P.root i) (B.form (P.root k)) (P.root k) = (B.form (P.root j)) (P.root j)
theorem RootPairing.Base.pairingIn_le_zero_of_ne {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [Finite ι] [CharZero R] [P.IsCrystallographic] [NoZeroDivisors R] [NoZeroSMulDivisors R M] [NoZeroSMulDivisors R N] (b : P.Base) {i j : ι} (hij : i j) (hi : i b.support) (hj : j b.support) :
P.pairingIn i j 0
theorem RootPairing.Base.root_sub_root_mem_of_mem_of_mem {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [Finite ι] [CharZero R] [P.IsCrystallographic] [NoZeroDivisors R] [NoZeroSMulDivisors R M] [NoZeroSMulDivisors R N] (b : P.Base) (i j k : ι) (hij : i j) (hi : i b.support) (hj : j b.support) (hk : P.root k + P.root i - P.root j Set.range P.root) (hkj : k j) (hk' : P.root k + P.root i Set.range P.root) :
P.root k - P.root j Set.range P.root

This is Lemma 2.5 (a) from Geck.

theorem RootPairing.Base.root_add_root_mem_of_mem_of_mem {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [Finite ι] [CharZero R] [P.IsCrystallographic] [NoZeroDivisors R] [NoZeroSMulDivisors R M] [NoZeroSMulDivisors R N] (b : P.Base) (i j k : ι) (hij : i j) (hi : i b.support) (hj : j b.support) (hk : P.root k + P.root i - P.root j Set.range P.root) (hkj : P.root k -P.root i) (hk' : P.root k - P.root j Set.range P.root) :
P.root k + P.root i Set.range P.root

This is Lemma 2.5 (b) from Geck.