Linear equivalences of tensor products as isometries #
These results are separate from the definition of QuadraticForm.tmul
as that file is very slow.
Main definitions #
QuadraticForm.Isometry.tmul
:TensorProduct.map
as aQuadraticForm.Isometry
QuadraticForm.tensorComm
:TensorProduct.comm
as aQuadraticForm.IsometryEquiv
QuadraticForm.tensorAssoc
:TensorProduct.assoc
as aQuadraticForm.IsometryEquiv
QuadraticForm.tensorRId
:TensorProduct.rid
as aQuadraticForm.IsometryEquiv
QuadraticForm.tensorLId
:TensorProduct.lid
as aQuadraticForm.IsometryEquiv
@[simp]
theorem
QuadraticForm.tmul_comp_tensorMap
{R : Type uR}
{M₁ : Type uM₁}
{M₂ : Type uM₂}
{M₃ : Type uM₃}
{M₄ : Type uM₄}
[CommRing R]
[AddCommGroup M₁]
[AddCommGroup M₂]
[AddCommGroup M₃]
[AddCommGroup M₄]
[Module R M₁]
[Module R M₂]
[Module R M₃]
[Module R M₄]
[Invertible 2]
{Q₁ : QuadraticForm R M₁}
{Q₂ : QuadraticForm R M₂}
{Q₃ : QuadraticForm R M₃}
{Q₄ : QuadraticForm R M₄}
(f : Q₁ →qᵢ Q₂)
(g : Q₃ →qᵢ Q₄)
:
QuadraticMap.comp (Q₂.tmul Q₄) (TensorProduct.map f.toLinearMap g.toLinearMap) = Q₁.tmul Q₃
@[simp]
theorem
QuadraticForm.tmul_tensorMap_apply
{R : Type uR}
{M₁ : Type uM₁}
{M₂ : Type uM₂}
{M₃ : Type uM₃}
{M₄ : Type uM₄}
[CommRing R]
[AddCommGroup M₁]
[AddCommGroup M₂]
[AddCommGroup M₃]
[AddCommGroup M₄]
[Module R M₁]
[Module R M₂]
[Module R M₃]
[Module R M₄]
[Invertible 2]
{Q₁ : QuadraticForm R M₁}
{Q₂ : QuadraticForm R M₂}
{Q₃ : QuadraticForm R M₃}
{Q₄ : QuadraticForm R M₄}
(f : Q₁ →qᵢ Q₂)
(g : Q₃ →qᵢ Q₄)
(x : TensorProduct R M₁ M₃)
:
(Q₂.tmul Q₄) ((TensorProduct.map f.toLinearMap g.toLinearMap) x) = (Q₁.tmul Q₃) x
noncomputable def
QuadraticMap.Isometry.tmul
{R : Type uR}
{M₁ : Type uM₁}
{M₂ : Type uM₂}
{M₃ : Type uM₃}
{M₄ : Type uM₄}
[CommRing R]
[AddCommGroup M₁]
[AddCommGroup M₂]
[AddCommGroup M₃]
[AddCommGroup M₄]
[Module R M₁]
[Module R M₂]
[Module R M₃]
[Module R M₄]
[Invertible 2]
{Q₁ : QuadraticForm R M₁}
{Q₂ : QuadraticForm R M₂}
{Q₃ : QuadraticForm R M₃}
{Q₄ : QuadraticForm R M₄}
(f : Q₁ →qᵢ Q₂)
(g : Q₃ →qᵢ Q₄)
:
Q₁.tmul Q₃ →qᵢ Q₂.tmul Q₄
TensorProduct.map
for Quadraticform.Isometry
s
Equations
- f.tmul g = { toLinearMap := TensorProduct.map f.toLinearMap g.toLinearMap, map_app' := ⋯ }
Instances For
@[simp]
theorem
QuadraticMap.Isometry.tmul_apply
{R : Type uR}
{M₁ : Type uM₁}
{M₂ : Type uM₂}
{M₃ : Type uM₃}
{M₄ : Type uM₄}
[CommRing R]
[AddCommGroup M₁]
[AddCommGroup M₂]
[AddCommGroup M₃]
[AddCommGroup M₄]
[Module R M₁]
[Module R M₂]
[Module R M₃]
[Module R M₄]
[Invertible 2]
{Q₁ : QuadraticForm R M₁}
{Q₂ : QuadraticForm R M₂}
{Q₃ : QuadraticForm R M₃}
{Q₄ : QuadraticForm R M₄}
(f : Q₁ →qᵢ Q₂)
(g : Q₃ →qᵢ Q₄)
(x : TensorProduct R M₁ M₃)
:
(f.tmul g) x = (TensorProduct.map f.toLinearMap g.toLinearMap) x
@[simp]
theorem
QuadraticForm.tmul_comp_tensorComm
{R : Type uR}
{M₁ : Type uM₁}
{M₂ : Type uM₂}
[CommRing R]
[AddCommGroup M₁]
[AddCommGroup M₂]
[Module R M₁]
[Module R M₂]
[Invertible 2]
(Q₁ : QuadraticForm R M₁)
(Q₂ : QuadraticForm R M₂)
:
QuadraticMap.comp (Q₂.tmul Q₁) ↑(TensorProduct.comm R M₁ M₂) = Q₁.tmul Q₂
@[simp]
theorem
QuadraticForm.tmul_tensorComm_apply
{R : Type uR}
{M₁ : Type uM₁}
{M₂ : Type uM₂}
[CommRing R]
[AddCommGroup M₁]
[AddCommGroup M₂]
[Module R M₁]
[Module R M₂]
[Invertible 2]
(Q₁ : QuadraticForm R M₁)
(Q₂ : QuadraticForm R M₂)
(x : TensorProduct R M₁ M₂)
:
(Q₂.tmul Q₁) ((TensorProduct.comm R M₁ M₂) x) = (Q₁.tmul Q₂) x
noncomputable def
QuadraticForm.tensorComm
{R : Type uR}
{M₁ : Type uM₁}
{M₂ : Type uM₂}
[CommRing R]
[AddCommGroup M₁]
[AddCommGroup M₂]
[Module R M₁]
[Module R M₂]
[Invertible 2]
(Q₁ : QuadraticForm R M₁)
(Q₂ : QuadraticForm R M₂)
:
QuadraticMap.IsometryEquiv (Q₁.tmul Q₂) (Q₂.tmul Q₁)
TensorProduct.comm
preserves tensor products of quadratic forms.
Equations
- Q₁.tensorComm Q₂ = { toLinearEquiv := TensorProduct.comm R M₁ M₂, map_app' := ⋯ }
Instances For
@[simp]
theorem
QuadraticForm.tensorComm_toLinearEquiv
{R : Type uR}
{M₁ : Type uM₁}
{M₂ : Type uM₂}
[CommRing R]
[AddCommGroup M₁]
[AddCommGroup M₂]
[Module R M₁]
[Module R M₂]
[Invertible 2]
(Q₁ : QuadraticForm R M₁)
(Q₂ : QuadraticForm R M₂)
:
(Q₁.tensorComm Q₂).toLinearEquiv = TensorProduct.comm R M₁ M₂
@[simp]
theorem
QuadraticForm.tensorComm_apply
{R : Type uR}
{M₁ : Type uM₁}
{M₂ : Type uM₂}
[CommRing R]
[AddCommGroup M₁]
[AddCommGroup M₂]
[Module R M₁]
[Module R M₂]
[Invertible 2]
(Q₁ : QuadraticForm R M₁)
(Q₂ : QuadraticForm R M₂)
(x : TensorProduct R M₁ M₂)
:
(Q₁.tensorComm Q₂) x = (TensorProduct.comm R M₁ M₂) x
@[simp]
theorem
QuadraticForm.tensorComm_symm
{R : Type uR}
{M₁ : Type uM₁}
{M₂ : Type uM₂}
[CommRing R]
[AddCommGroup M₁]
[AddCommGroup M₂]
[Module R M₁]
[Module R M₂]
[Invertible 2]
(Q₁ : QuadraticForm R M₁)
(Q₂ : QuadraticForm R M₂)
:
(Q₁.tensorComm Q₂).symm = Q₂.tensorComm Q₁
@[simp]
theorem
QuadraticForm.tmul_comp_tensorAssoc
{R : Type uR}
{M₁ : Type uM₁}
{M₂ : Type uM₂}
{M₃ : Type uM₃}
[CommRing R]
[AddCommGroup M₁]
[AddCommGroup M₂]
[AddCommGroup M₃]
[Module R M₁]
[Module R M₂]
[Module R M₃]
[Invertible 2]
(Q₁ : QuadraticForm R M₁)
(Q₂ : QuadraticForm R M₂)
(Q₃ : QuadraticForm R M₃)
:
QuadraticMap.comp (Q₁.tmul (Q₂.tmul Q₃)) ↑(TensorProduct.assoc R M₁ M₂ M₃) = (Q₁.tmul Q₂).tmul Q₃
@[simp]
theorem
QuadraticForm.tmul_tensorAssoc_apply
{R : Type uR}
{M₁ : Type uM₁}
{M₂ : Type uM₂}
{M₃ : Type uM₃}
[CommRing R]
[AddCommGroup M₁]
[AddCommGroup M₂]
[AddCommGroup M₃]
[Module R M₁]
[Module R M₂]
[Module R M₃]
[Invertible 2]
(Q₁ : QuadraticForm R M₁)
(Q₂ : QuadraticForm R M₂)
(Q₃ : QuadraticForm R M₃)
(x : TensorProduct R (TensorProduct R M₁ M₂) M₃)
:
(Q₁.tmul (Q₂.tmul Q₃)) ((TensorProduct.assoc R M₁ M₂ M₃) x) = ((Q₁.tmul Q₂).tmul Q₃) x
noncomputable def
QuadraticForm.tensorAssoc
{R : Type uR}
{M₁ : Type uM₁}
{M₂ : Type uM₂}
{M₃ : Type uM₃}
[CommRing R]
[AddCommGroup M₁]
[AddCommGroup M₂]
[AddCommGroup M₃]
[Module R M₁]
[Module R M₂]
[Module R M₃]
[Invertible 2]
(Q₁ : QuadraticForm R M₁)
(Q₂ : QuadraticForm R M₂)
(Q₃ : QuadraticForm R M₃)
:
QuadraticMap.IsometryEquiv ((Q₁.tmul Q₂).tmul Q₃) (Q₁.tmul (Q₂.tmul Q₃))
TensorProduct.assoc
preserves tensor products of quadratic forms.
Equations
- Q₁.tensorAssoc Q₂ Q₃ = { toLinearEquiv := TensorProduct.assoc R M₁ M₂ M₃, map_app' := ⋯ }
Instances For
@[simp]
theorem
QuadraticForm.tensorAssoc_toLinearEquiv
{R : Type uR}
{M₁ : Type uM₁}
{M₂ : Type uM₂}
{M₃ : Type uM₃}
[CommRing R]
[AddCommGroup M₁]
[AddCommGroup M₂]
[AddCommGroup M₃]
[Module R M₁]
[Module R M₂]
[Module R M₃]
[Invertible 2]
(Q₁ : QuadraticForm R M₁)
(Q₂ : QuadraticForm R M₂)
(Q₃ : QuadraticForm R M₃)
:
(Q₁.tensorAssoc Q₂ Q₃).toLinearEquiv = TensorProduct.assoc R M₁ M₂ M₃
@[simp]
theorem
QuadraticForm.tensorAssoc_apply
{R : Type uR}
{M₁ : Type uM₁}
{M₂ : Type uM₂}
{M₃ : Type uM₃}
[CommRing R]
[AddCommGroup M₁]
[AddCommGroup M₂]
[AddCommGroup M₃]
[Module R M₁]
[Module R M₂]
[Module R M₃]
[Invertible 2]
(Q₁ : QuadraticForm R M₁)
(Q₂ : QuadraticForm R M₂)
(Q₃ : QuadraticForm R M₃)
(x : TensorProduct R (TensorProduct R M₁ M₂) M₃)
:
(Q₁.tensorAssoc Q₂ Q₃) x = (TensorProduct.assoc R M₁ M₂ M₃) x
@[simp]
theorem
QuadraticForm.tensorAssoc_symm_apply
{R : Type uR}
{M₁ : Type uM₁}
{M₂ : Type uM₂}
{M₃ : Type uM₃}
[CommRing R]
[AddCommGroup M₁]
[AddCommGroup M₂]
[AddCommGroup M₃]
[Module R M₁]
[Module R M₂]
[Module R M₃]
[Invertible 2]
(Q₁ : QuadraticForm R M₁)
(Q₂ : QuadraticForm R M₂)
(Q₃ : QuadraticForm R M₃)
(x : TensorProduct R M₁ (TensorProduct R M₂ M₃))
:
(Q₁.tensorAssoc Q₂ Q₃).symm x = (TensorProduct.assoc R M₁ M₂ M₃).symm x
theorem
QuadraticForm.comp_tensorRId_eq
{R : Type uR}
{M₁ : Type uM₁}
[CommRing R]
[AddCommGroup M₁]
[Module R M₁]
[Invertible 2]
(Q₁ : QuadraticForm R M₁)
:
QuadraticMap.comp Q₁ ↑(TensorProduct.rid R M₁) = Q₁.tmul QuadraticMap.sq
@[simp]
theorem
QuadraticForm.tmul_tensorRId_apply
{R : Type uR}
{M₁ : Type uM₁}
[CommRing R]
[AddCommGroup M₁]
[Module R M₁]
[Invertible 2]
(Q₁ : QuadraticForm R M₁)
(x : TensorProduct R M₁ R)
:
Q₁ ((TensorProduct.rid R M₁) x) = (Q₁.tmul QuadraticMap.sq) x
noncomputable def
QuadraticForm.tensorRId
{R : Type uR}
{M₁ : Type uM₁}
[CommRing R]
[AddCommGroup M₁]
[Module R M₁]
[Invertible 2]
(Q₁ : QuadraticForm R M₁)
:
QuadraticMap.IsometryEquiv (Q₁.tmul QuadraticMap.sq) Q₁
TensorProduct.rid
preserves tensor products of quadratic forms.
Equations
- Q₁.tensorRId = { toLinearEquiv := TensorProduct.rid R M₁, map_app' := ⋯ }
Instances For
@[simp]
theorem
QuadraticForm.tensorRId_toLinearEquiv
{R : Type uR}
{M₁ : Type uM₁}
[CommRing R]
[AddCommGroup M₁]
[Module R M₁]
[Invertible 2]
(Q₁ : QuadraticForm R M₁)
:
Q₁.tensorRId.toLinearEquiv = TensorProduct.rid R M₁
@[simp]
theorem
QuadraticForm.tensorRId_apply
{R : Type uR}
{M₁ : Type uM₁}
[CommRing R]
[AddCommGroup M₁]
[Module R M₁]
[Invertible 2]
(Q₁ : QuadraticForm R M₁)
(x : TensorProduct R M₁ R)
:
Q₁.tensorRId x = (TensorProduct.rid R M₁) x
@[simp]
theorem
QuadraticForm.tensorRId_symm_apply
{R : Type uR}
{M₁ : Type uM₁}
[CommRing R]
[AddCommGroup M₁]
[Module R M₁]
[Invertible 2]
(Q₁ : QuadraticForm R M₁)
(x : M₁)
:
Q₁.tensorRId.symm x = (TensorProduct.rid R M₁).symm x
theorem
QuadraticForm.comp_tensorLId_eq
{R : Type uR}
{M₂ : Type uM₂}
[CommRing R]
[AddCommGroup M₂]
[Module R M₂]
[Invertible 2]
(Q₂ : QuadraticForm R M₂)
:
QuadraticMap.comp Q₂ ↑(TensorProduct.lid R M₂) = QuadraticForm.tmul QuadraticMap.sq Q₂
@[simp]
theorem
QuadraticForm.tmul_tensorLId_apply
{R : Type uR}
{M₂ : Type uM₂}
[CommRing R]
[AddCommGroup M₂]
[Module R M₂]
[Invertible 2]
(Q₂ : QuadraticForm R M₂)
(x : TensorProduct R R M₂)
:
Q₂ ((TensorProduct.lid R M₂) x) = (QuadraticForm.tmul QuadraticMap.sq Q₂) x
noncomputable def
QuadraticForm.tensorLId
{R : Type uR}
{M₂ : Type uM₂}
[CommRing R]
[AddCommGroup M₂]
[Module R M₂]
[Invertible 2]
(Q₂ : QuadraticForm R M₂)
:
QuadraticMap.IsometryEquiv (QuadraticForm.tmul QuadraticMap.sq Q₂) Q₂
TensorProduct.lid
preserves tensor products of quadratic forms.
Equations
- Q₂.tensorLId = { toLinearEquiv := TensorProduct.lid R M₂, map_app' := ⋯ }
Instances For
@[simp]
theorem
QuadraticForm.tensorLId_toLinearEquiv
{R : Type uR}
{M₂ : Type uM₂}
[CommRing R]
[AddCommGroup M₂]
[Module R M₂]
[Invertible 2]
(Q₂ : QuadraticForm R M₂)
:
Q₂.tensorLId.toLinearEquiv = TensorProduct.lid R M₂
@[simp]
theorem
QuadraticForm.tensorLId_apply
{R : Type uR}
{M₂ : Type uM₂}
[CommRing R]
[AddCommGroup M₂]
[Module R M₂]
[Invertible 2]
(Q₂ : QuadraticForm R M₂)
(x : TensorProduct R R M₂)
:
Q₂.tensorLId x = (TensorProduct.lid R M₂) x
@[simp]
theorem
QuadraticForm.tensorLId_symm_apply
{R : Type uR}
{M₂ : Type uM₂}
[CommRing R]
[AddCommGroup M₂]
[Module R M₂]
[Invertible 2]
(Q₂ : QuadraticForm R M₂)
(x : M₂)
:
Q₂.tensorLId.symm x = (TensorProduct.lid R M₂).symm x