Documentation

Mathlib.LinearAlgebra.Multilinear.Pi

Interactions between (dependent) functions and multilinear maps #

Main definitions #

theorem MultilinearMap.pi_ext {ι : Type uι} {κ : ιType} {R : Type uR} {M : (i : ι) → κ iType uM} {N : Type uN} [Semiring R] [(i : ι) → (k : κ i) → AddCommMonoid (M i k)] [AddCommMonoid N] [(i : ι) → (k : κ i) → Module R (M i k)] [Module R N] [Finite ι] [∀ (i : ι), Finite (κ i)] [(i : ι) → DecidableEq (κ i)] ⦃f g : MultilinearMap R (fun (i : ι) => (j : κ i) → M i j) N (h : ∀ (p : (i : ι) → κ i), (f.compLinearMap fun (i : ι) => LinearMap.single R (M i) (p i)) = g.compLinearMap fun (i : ι) => LinearMap.single R (M i) (p i)) :
f = g

Two multilinear maps from finite families are equal if they agree on the generators.

This is a multilinear version of LinearMap.pi_ext.

def MultilinearMap.piFamily {ι : Type uι} {κ : ιType} {R : Type uR} {M : (i : ι) → κ iType uM} {N : ((i : ι) → κ i)Type uN} [Semiring R] [(i : ι) → (k : κ i) → AddCommMonoid (M i k)] [(p : (i : ι) → κ i) → AddCommMonoid (N p)] [(i : ι) → (k : κ i) → Module R (M i k)] [(p : (i : ι) → κ i) → Module R (N p)] (f : (p : (i : ι) → κ i) → MultilinearMap R (fun (i : ι) => M i (p i)) (N p)) :
MultilinearMap R (fun (i : ι) => (j : κ i) → M i j) ((t : (i : ι) → κ i) → N t)

Given a family of indices κ and a multilinear map f p for each way p to select one index from each family, piFamily f maps a family of functions (one for each domain κ i) into a function from each selection of indices (with domain Π i, κ i).

Equations
  • MultilinearMap.piFamily f = { toFun := fun (x : (i : ι) → (j : κ i) → M i j) (p : (i : ι) → κ i) => (f p) fun (i : ι) => x i (p i), map_update_add' := , map_update_smul' := }
Instances For
    @[simp]
    theorem MultilinearMap.piFamily_apply {ι : Type uι} {κ : ιType} {R : Type uR} {M : (i : ι) → κ iType uM} {N : ((i : ι) → κ i)Type uN} [Semiring R] [(i : ι) → (k : κ i) → AddCommMonoid (M i k)] [(p : (i : ι) → κ i) → AddCommMonoid (N p)] [(i : ι) → (k : κ i) → Module R (M i k)] [(p : (i : ι) → κ i) → Module R (N p)] (f : (p : (i : ι) → κ i) → MultilinearMap R (fun (i : ι) => M i (p i)) (N p)) (x : (i : ι) → (j : κ i) → M i j) (p : (i : ι) → κ i) :
    (MultilinearMap.piFamily f) x p = (f p) fun (i : ι) => x i (p i)
    @[simp]
    theorem MultilinearMap.piFamily_single {ι : Type uι} {κ : ιType} {R : Type uR} {M : (i : ι) → κ iType uM} {N : ((i : ι) → κ i)Type uN} [Semiring R] [(i : ι) → (k : κ i) → AddCommMonoid (M i k)] [(p : (i : ι) → κ i) → AddCommMonoid (N p)] [(i : ι) → (k : κ i) → Module R (M i k)] [(p : (i : ι) → κ i) → Module R (N p)] [Fintype ι] [(i : ι) → DecidableEq (κ i)] (f : (p : (i : ι) → κ i) → MultilinearMap R (fun (i : ι) => M i (p i)) (N p)) (p : (i : ι) → κ i) (m : (i : ι) → M i (p i)) :
    ((MultilinearMap.piFamily f) fun (i : ι) => Pi.single (p i) (m i)) = Pi.single p ((f p) m)

    When applied to a family of finitely-supported functions each supported on a single element, piFamily is itself supported on a single element, with value equal to the map f applied at that point.

    @[simp]
    theorem MultilinearMap.piFamily_single_left_apply {ι : Type uι} {κ : ιType} {R : Type uR} {M : (i : ι) → κ iType uM} {N : ((i : ι) → κ i)Type uN} [Semiring R] [(i : ι) → (k : κ i) → AddCommMonoid (M i k)] [(p : (i : ι) → κ i) → AddCommMonoid (N p)] [(i : ι) → (k : κ i) → Module R (M i k)] [(p : (i : ι) → κ i) → Module R (N p)] [Fintype ι] [(i : ι) → DecidableEq (κ i)] (p : (i : ι) → κ i) (f : MultilinearMap R (fun (i : ι) => M i (p i)) (N p)) (x : (i : ι) → (j : κ i) → M i j) :
    (MultilinearMap.piFamily (Pi.single p f)) x = Pi.single p (f fun (i : ι) => x i (p i))

    When only one member of the family of multilinear maps is nonzero, the result consists only of the component from that member.

    theorem MultilinearMap.piFamily_single_left {ι : Type uι} {κ : ιType} {R : Type uR} {M : (i : ι) → κ iType uM} {N : ((i : ι) → κ i)Type uN} [Semiring R] [(i : ι) → (k : κ i) → AddCommMonoid (M i k)] [(p : (i : ι) → κ i) → AddCommMonoid (N p)] [(i : ι) → (k : κ i) → Module R (M i k)] [(p : (i : ι) → κ i) → Module R (N p)] [Fintype ι] [(i : ι) → DecidableEq (κ i)] (p : (i : ι) → κ i) (f : MultilinearMap R (fun (i : ι) => M i (p i)) (N p)) :
    MultilinearMap.piFamily (Pi.single p f) = (LinearMap.single R N p).compMultilinearMap (f.compLinearMap fun (i : ι) => LinearMap.proj (p i))
    @[simp]
    theorem MultilinearMap.piFamily_compLinearMap_lsingle {ι : Type uι} {κ : ιType} {R : Type uR} {M : (i : ι) → κ iType uM} {N : ((i : ι) → κ i)Type uN} [Semiring R] [(i : ι) → (k : κ i) → AddCommMonoid (M i k)] [(p : (i : ι) → κ i) → AddCommMonoid (N p)] [(i : ι) → (k : κ i) → Module R (M i k)] [(p : (i : ι) → κ i) → Module R (N p)] [Fintype ι] [(i : ι) → DecidableEq (κ i)] (f : (p : (i : ι) → κ i) → MultilinearMap R (fun (i : ι) => M i (p i)) (N p)) (p : (i : ι) → κ i) :
    ((MultilinearMap.piFamily f).compLinearMap fun (i : ι) => LinearMap.single R (M i) (p i)) = (LinearMap.single R N p).compMultilinearMap (f p)
    @[simp]
    theorem MultilinearMap.piFamily_zero {ι : Type uι} {κ : ιType} {R : Type uR} {M : (i : ι) → κ iType uM} {N : ((i : ι) → κ i)Type uN} [Semiring R] [(i : ι) → (k : κ i) → AddCommMonoid (M i k)] [(p : (i : ι) → κ i) → AddCommMonoid (N p)] [(i : ι) → (k : κ i) → Module R (M i k)] [(p : (i : ι) → κ i) → Module R (N p)] :
    @[simp]
    theorem MultilinearMap.piFamily_add {ι : Type uι} {κ : ιType} {R : Type uR} {M : (i : ι) → κ iType uM} {N : ((i : ι) → κ i)Type uN} [Semiring R] [(i : ι) → (k : κ i) → AddCommMonoid (M i k)] [(p : (i : ι) → κ i) → AddCommMonoid (N p)] [(i : ι) → (k : κ i) → Module R (M i k)] [(p : (i : ι) → κ i) → Module R (N p)] (f g : (p : (i : ι) → κ i) → MultilinearMap R (fun (i : ι) => M i (p i)) (N p)) :
    @[simp]
    theorem MultilinearMap.piFamily_smul {ι : Type uι} {κ : ιType} {S : Type uS} {R : Type uR} {M : (i : ι) → κ iType uM} {N : ((i : ι) → κ i)Type uN} [Semiring R] [(i : ι) → (k : κ i) → AddCommMonoid (M i k)] [(p : (i : ι) → κ i) → AddCommMonoid (N p)] [(i : ι) → (k : κ i) → Module R (M i k)] [(p : (i : ι) → κ i) → Module R (N p)] [Monoid S] [(p : (i : ι) → κ i) → DistribMulAction S (N p)] [∀ (p : (i : ι) → κ i), SMulCommClass R S (N p)] (s : S) (f : (p : (i : ι) → κ i) → MultilinearMap R (fun (i : ι) => M i (p i)) (N p)) :
    def MultilinearMap.piFamilyₗ {ι : Type uι} {κ : ιType} {R : Type uR} {M : (i : ι) → κ iType uM} {N : ((i : ι) → κ i)Type uN} [CommSemiring R] [(i : ι) → (k : κ i) → AddCommMonoid (M i k)] [(p : (i : ι) → κ i) → AddCommMonoid (N p)] [(i : ι) → (k : κ i) → Module R (M i k)] [(p : (i : ι) → κ i) → Module R (N p)] :
    ((p : (i : ι) → κ i) → MultilinearMap R (fun (i : ι) => M i (p i)) (N p)) →ₗ[R] MultilinearMap R (fun (i : ι) => (j : κ i) → M i j) ((t : (i : ι) → κ i) → N t)

    MultilinearMap.piFamily as a linear map.

    Equations
    Instances For
      @[simp]
      theorem MultilinearMap.piFamilyₗ_apply {ι : Type uι} {κ : ιType} {R : Type uR} {M : (i : ι) → κ iType uM} {N : ((i : ι) → κ i)Type uN} [CommSemiring R] [(i : ι) → (k : κ i) → AddCommMonoid (M i k)] [(p : (i : ι) → κ i) → AddCommMonoid (N p)] [(i : ι) → (k : κ i) → Module R (M i k)] [(p : (i : ι) → κ i) → Module R (N p)] (f : (p : (i : ι) → κ i) → MultilinearMap R (fun (i : ι) => M i (p i)) (N p)) :
      MultilinearMap.piFamilyₗ f = MultilinearMap.piFamily f