Documentation

Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Card

Cardinal of the general linear group over finite rings #

This file computes the cardinal of the general linear group over finite rings.

Main statements #

theorem card_linearIndependent {K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] [Fintype K] [Finite V] {k : } (hk : k Module.finrank K V) :
Nat.card { s : Fin kV // LinearIndependent K s } = i : Fin k, (Fintype.card K ^ Module.finrank K V - Fintype.card K ^ i)

The cardinal of the set of linearly independent vectors over a finite dimensional vector space over a finite field.

noncomputable def Matrix.equiv_GL_linearindependent {𝔽 : Type u_1} [Field 𝔽] (n : ) (hn : 0 < n) :
GL (Fin n) 𝔽 { s : Fin nFin n𝔽 // LinearIndependent 𝔽 s }

Equivalence between GL n F and n vectors of length n that are linearly independent. Given by sending a matrix to its columns.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem Matrix.card_GL_field {𝔽 : Type u_1} [Field 𝔽] [Fintype 𝔽] (n : ) :
    Nat.card (GL (Fin n) 𝔽) = i : Fin n, (Fintype.card 𝔽 ^ n - Fintype.card 𝔽 ^ i)

    The cardinal of the general linear group over a finite field.