Matrices with fixed determinant #
This file defines the type of matrices with fixed determinant m
and proves some basic results
about them.
Note: Some of this was done originally in Lean 3 in the kbb (https://github.com/kim-em/kbb/tree/master) repository, so credit to those authors.
def
FixedDetMatrix
(n : Type u_1)
[DecidableEq n]
[Fintype n]
(R : Type u_2)
[CommRing R]
(m : R)
:
Type (max 0 u_1 u_2)
The set of matrices with fixed determinant m
.
Equations
- FixedDetMatrix n R m = { A : Matrix n n R // A.det = m }
Instances For
theorem
FixedDetMatrix.ext'
(n : Type u_1)
[DecidableEq n]
[Fintype n]
(R : Type u_2)
[CommRing R]
{m : R}
{A : FixedDetMatrix n R m}
{B : FixedDetMatrix n R m}
(h : ↑A = ↑B)
:
A = B
Extensionality theorem for FixedDetMatrix
with respect to the underlying matrix, not
entriwise.
theorem
FixedDetMatrix.ext
(n : Type u_1)
[DecidableEq n]
[Fintype n]
(R : Type u_2)
[CommRing R]
{m : R}
{A : FixedDetMatrix n R m}
{B : FixedDetMatrix n R m}
(h : ∀ (i j : n), ↑A i j = ↑B i j)
:
A = B
instance
FixedDetMatrix.instSMulSpecialLinearGroup
(n : Type u_1)
[DecidableEq n]
[Fintype n]
(R : Type u_2)
[CommRing R]
(m : R)
:
SMul (Matrix.SpecialLinearGroup n R) (FixedDetMatrix n R m)
Equations
- FixedDetMatrix.instSMulSpecialLinearGroup n R m = { smul := fun (g : Matrix.SpecialLinearGroup n R) (A : FixedDetMatrix n R m) => ⟨↑g * ↑A, ⋯⟩ }
theorem
FixedDetMatrix.smul_def
(n : Type u_1)
[DecidableEq n]
[Fintype n]
(R : Type u_2)
[CommRing R]
(m : R)
(g : Matrix.SpecialLinearGroup n R)
(A : FixedDetMatrix n R m)
:
instance
FixedDetMatrix.instMulActionSpecialLinearGroup
(n : Type u_1)
[DecidableEq n]
[Fintype n]
(R : Type u_2)
[CommRing R]
(m : R)
:
MulAction (Matrix.SpecialLinearGroup n R) (FixedDetMatrix n R m)
Equations
theorem
FixedDetMatrix.smul_coe
(n : Type u_1)
[DecidableEq n]
[Fintype n]
(R : Type u_2)
[CommRing R]
(m : R)
(g : Matrix.SpecialLinearGroup n R)
(A : FixedDetMatrix n R m)
: